Endoglucanases: insights into thermostability for biofuel applications

Date
2013-09-27
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Springer Nature
Can't use the file because of accessibility barriers? Contact us with the title of the item, permanent link, and specifics of your accommodation need.
Abstract

Obtaining bioethanol from cellulosic biomass involves numerous steps, among which the enzymatic conversion of the polymer to individual sugar units has been a main focus of the biotechnology industry. Among the cellulases that break down the polymeric cellulose are endoglucanases that act synergistically for subsequent hydrolytic reactions. The endoglucanases that have garnered relatively more attention are those that can withstand high temperatures, i.e., are thermostable. Although our understanding of thermostability in endoglucanases is incomplete, some molecular features that are responsible for increased thermostability have been recently identified. This review focuses on the investigations of endoglucanases and their implications for biofuel applications.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Yennamalli RM, Rader AJ, Kenny AJ, Wolt JD, Sen TZ. Endoglucanases: insights into thermostability for biofuel applications. Biotechnol Biofuels. 2013;6(1):136. Published 2013 Sep 27. doi:10.1186/1754-6834-6-136
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Biotechnology for Biofuels
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
Full Text Available at
This item is under embargo {{howLong}}