On the projective Ricci curvature

dc.contributor.authorShen, Zhongmin
dc.contributor.authorSun, Liling
dc.contributor.departmentMathematical Sciences, School of Scienceen_US
dc.date.accessioned2022-01-11T19:53:35Z
dc.date.available2022-01-11T19:53:35Z
dc.date.issued2020-07
dc.description.abstractThe notion of the Ricci curvature is defined for sprays on a manifold. With a volume form on a manifold, every spray can be deformed to a projective spray. The Ricci curvature of a projective spray is called the projective Ricci curvature. In this paper, we introduce the notion of projectively Ricci-flat sprays. We establish a global rigidity result for projectively Ricci-flat sprays with nonnegative Ricci curvature. Then we study and characterize projectively Ricci-flat Randers metrics.en_US
dc.eprint.versionAuthor's manuscripten_US
dc.identifier.citationShen, Z., & Sun, L. (2020). On the projective Ricci curvature. Science China Mathematics. https://doi.org/10.1007/s11425-020-1705-xen_US
dc.identifier.issn1869-1862en_US
dc.identifier.urihttps://hdl.handle.net/1805/27352
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.isversionof10.1007/s11425-020-1705-xen_US
dc.relation.journalScience China Mathematicsen_US
dc.rightsPublisher Policyen_US
dc.sourceAuthoren_US
dc.subjectRicci curvatureen_US
dc.subjectprojective sprayen_US
dc.subjectprojectively Ricci-flat spraysen_US
dc.titleOn the projective Ricci curvatureen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Shen2020OntheProjective-AAM.pdf
Size:
172.85 KB
Format:
Adobe Portable Document Format
Description:
Author's Manuscript
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: