Using Machine Learning Techniques to Classify and Predict Static Code Analysis Tool Warnings

dc.contributor.authorAlikhashashneh, Enas A.
dc.contributor.authorRaje, Rajeev R.
dc.contributor.authorHill, James H.
dc.contributor.departmentComputer and Information Science, School of Scienceen_US
dc.date.accessioned2019-11-15T20:50:06Z
dc.date.available2019-11-15T20:50:06Z
dc.date.issued2018-10
dc.description.abstractThis paper discusses our work on using software engineering metrics (i.e., source code metrics) to classify an error message generated by a Static Code Analysis (SCA) tool as a true-positive, false-positive, or false-negative. Specifically, we compare the performance of Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Random Forests, and Repeated Incremental Pruning to Produce Error Reduction (RIPPER) over eight datasets. The performance of the techniques is assessed by computing the F-measure metric, which is defined as the weighted harmonic mean of the precision and recall of the predicted model. The overall results of the study show that the F-measure value of the predicted model, which is generated using Random Forests technique, ranges from 83% to 98%. Additionally, the Random Forests technique outperforms the other techniques. Lastly, our results indicate that the complexity and coupling metrics have the most impact on whether a SCA tool with generate a false-positive warning or not.en_US
dc.eprint.versionAuthor's manuscripten_US
dc.identifier.citationAlikhashashneh, E. A., Raje, R. R., & Hill, J. H. (2018). Using Machine Learning Techniques to Classify and Predict Static Code Analysis Tool Warnings. 2018 IEEE/ACS 15th International Conference on Computer Systems and Applications (AICCSA), 1–8. https://doi.org/10.1109/AICCSA.2018.8612819en_US
dc.identifier.urihttps://hdl.handle.net/1805/21358
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.isversionof10.1109/AICCSA.2018.8612819en_US
dc.relation.journal2018 IEEE/ACS 15th International Conference on Computer Systems and Applicationsen_US
dc.rightsPublisher Policyen_US
dc.sourceAuthoren_US
dc.subjectstatic code analysisen_US
dc.subjectsoftware engineeringen_US
dc.subjectmetricsen_US
dc.titleUsing Machine Learning Techniques to Classify and Predict Static Code Analysis Tool Warningsen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Alikhashashneh_2019_using.pdf
Size:
253.05 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: