Large-sample estimation and inference in multivariate single-index models

dc.contributor.authorWu, Jingwei
dc.contributor.authorPeng, Hanxiang
dc.contributor.authorTu, Wanzhu
dc.contributor.departmentMathematical Sciences, School of Scienceen_US
dc.date.accessioned2019-02-15T20:32:18Z
dc.date.available2019-02-15T20:32:18Z
dc.date.issued2019-05
dc.description.abstractBy optimizing index functions against different outcomes, we propose a multivariate single-index model (SIM) for development of medical indices that simultaneously work with multiple outcomes. Fitting of a multivariate SIM is not fundamentally different from fitting a univariate SIM, as the former can be written as a sum of multiple univariate SIMs with appropriate indicator functions. What have not been carefully studied are the theoretical properties of the parameter estimators. Because of the lack of asymptotic results, no formal inference procedure has been made available for multivariate SIMs. In this paper, we examine the asymptotic properties of the multivariate SIM parameter estimators. We show that, under mild regularity conditions, estimators for the multivariate SIM parameters are indeeden_US
dc.eprint.versionAuthor's manuscripten_US
dc.identifier.citationWu, J., Peng, H., & Tu, W. (2019). Large-sample estimation and inference in multivariate single-index models. Journal of Multivariate Analysis, 171, pp 382-396. https://doi.org/10.1016/j.jmva.2019.01.003en_US
dc.identifier.urihttps://hdl.handle.net/1805/18409
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.isversionof10.1016/j.jmva.2019.01.003en_US
dc.relation.journalJournal of Multivariate Analysisen_US
dc.rightsPublisher Policyen_US
dc.sourceAuthoren_US
dc.subjectasymptotic normalityen_US
dc.subjectconsistencyen_US
dc.subjectmixed effect modelen_US
dc.titleLarge-sample estimation and inference in multivariate single-index modelsen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Wu_2019_large.pdf
Size:
294.04 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: