The Small Conductance Calcium Activated Potassium Current Modulates the Ventricular Escape Rhythm in Normal Rabbit Hearts

Date
2018
Language
English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Elsevier
Abstract

Background The apamin-sensitive small-conductance calcium-activated K (SK) current (IKAS) modulates automaticity of the sinus node; IKAS blockade by apamin causes sinus bradycardia.

Objective To test the hypothesis that IKAS modulates ventricular automaticity.

Methods We tested the effects of apamin (100 nM) on ventricular escape rhythms in Langendorff perfused rabbit ventricles with atrioventricular (AV) block (Protocol 1) and on recorded transmembrane action potential (TMP) of pseudotendons of superfused right ventricular (RV) endocardial preparations (Protocol 2).

Results All preparations exhibited spontaneous ventricular escape rhythms. In Protocol 1, apamin decreased the atrial rate from 186.2±18.0 bpm to 163.8±18.7 bpm (N=6, p=0.006) but accelerated the ventricular escape rate from 51.5±10.7 to 98.2±25.4 bpm (p=0.031). Three preparations exhibited bursts of nonsustained ventricular tachycardia (NSVT) and pauses, resulting in repeated burst-termination pattern. In Protocol 2, apamin increased the ventricular escape rate from 70.2±13.1 to 110.1±2.2 bpm (p=0.035). Spontaneous phase 4 depolarization was recorded from the pseudotendons in 6 of 10 preparations at baseline and in 3 in the presence of apamin. There were no changes of phase 4 slope (18.37±3.55 vs. 18.93±3.26 mV/s, p=0.231, N=3), but the threshold of phase 0 activation (mV) reduced from -67.97±1.53 to -75.26±0.28 (p=0.034). Addition of JTV-519, a ryanodine receptor 2 (RyR2) stabilizer, in 5 preparations reduced escape rate back to baseline.

Conclusions Contrary to its bradycardic effect in the sinus node, IKAS blockade by apamin accelerates ventricular automaticity and causes repeated NSVT in normal ventricles. RyR2 blockade reversed the apamin effects on ventricular automaticity.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Wan, J., Chen, M., Wang, Z., Everett, T. H., Rubart-von der Lohe, M., Shen, C., … Chen, P.-S. (2018). The Small Conductance Calcium Activated Potassium Current Modulates the Ventricular Escape Rhythm in Normal Rabbit Hearts. Heart Rhythm. https://doi.org/10.1016/j.hrthm.2018.10.033
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Heart Rhythm
Rights
Publisher Policy
Source
Author
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Author's manuscript
Full Text Available at
This item is under embargo {{howLong}}