Incorporating graph information in Bayesian factor analysis with robust and adaptive shrinkage priors

Date
2024
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Oxford University Press
Can't use the file because of accessibility barriers? Contact us with the title of the item, permanent link, and specifics of your accommodation need.
Abstract

There has been an increasing interest in decomposing high-dimensional multi-omics data into a product of low-rank and sparse matrices for the purpose of dimension reduction and feature engineering. Bayesian factor models achieve such low-dimensional representation of the original data through different sparsity-inducing priors. However, few of these models can efficiently incorporate the information encoded by the biological graphs, which has been already proven to be useful in many analysis tasks. In this work, we propose a Bayesian factor model with novel hierarchical priors, which incorporate the biological graph knowledge as a tool of identifying a group of genes functioning collaboratively. The proposed model therefore enables sparsity within networks by allowing each factor loading to be shrunk adaptively and by considering additional layers to relate individual shrinkage parameters to the underlying graph information, both of which yield a more accurate structure recovery of factor loadings. Further, this new priors overcome the phase transition phenomenon, in contrast to existing graph-incorporated approaches, so that it is robust to noisy edges that are inconsistent with the actual sparsity structure of the factor loadings. Finally, our model can handle both continuous and discrete data types. The proposed method is shown to outperform several existing factor analysis methods through simulation experiments and real data analyses.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Zhang Q, Chang C, Shen L, Long Q. Incorporating graph information in Bayesian factor analysis with robust and adaptive shrinkage priors. Biometrics. 2024;80(1):ujad014. doi:10.1093/biomtc/ujad014
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Biometrics
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
This item is under embargo {{howLong}}