Lnk Deficiency Leads to TPO-Mediated Osteoclastogenesis and Increased Bone Mass Phenotype

dc.contributor.authorOlivos III, David J.
dc.contributor.authorAlvarez, Marta
dc.contributor.authorCheng, Ying-Hua
dc.contributor.authorHooker, R. Adam
dc.contributor.authorCiovacco, Wendy A.
dc.contributor.authorBethel, Monique
dc.contributor.authorMcGough, Haley
dc.contributor.authorYim, Christopher
dc.contributor.authorChitteti, Brahmananda R.
dc.contributor.authorEleniste, Pierre P.
dc.contributor.authorHorowitz, Mark C.
dc.contributor.authorSrour, Edward F.
dc.contributor.authorBruzzaniti, Angela
dc.contributor.authorFuchs, Robyn K.
dc.contributor.authorKacena, Melissa A.
dc.contributor.departmentOrthopaedic Surgery, School of Medicineen_US
dc.date.accessioned2019-05-06T18:58:13Z
dc.date.available2019-05-06T18:58:13Z
dc.date.issued2017-08
dc.description.abstractThe Lnk adapter protein negatively regulates the signaling of thrombopoietin (TPO), the main megakaryocyte (MK) growth factor. Lnk-deficient (-/-) mice have increased TPO signaling and increased MK number. Interestingly, several mouse models exist in which increased MK number leads to a high bone mass phenotype. Here we report the bone phenotype of these mice. MicroCT and static histomorphometric analyses at 20 weeks showed the distal femur of Lnk-/- mice to have significantly higher bone volume fraction and trabecular number compared to wild-type (WT) mice. Notably, despite a significant increase in the number of osteoclasts (OC), and decreased bone formation rate in Lnk-/- mice compared to WT mice, Lnk-/- mice demonstrated a 2.5-fold greater BV/TV suggesting impaired OC function in vivo. Additionally, Lnk-/- mouse femurs exhibited non-significant increases in mid-shaft cross-sectional area, yet increased periosteal BFR compared to WT femurs was observed. Lnk-/- femurs also had non-significant increases in polar moment of inertia and decreased cortical bone area and thickness, resulting in reduced bone stiffness, modulus, and strength compared to WT femurs. Of note, Lnk is expressed by OC lineage cells and when Lnk-/- OC progenitors are cultured in the presence of TPO, significantly more OC are observed than in WT cultures. Lnk is also expressed in osteoblast (OB) cells and in vitro reduced alkaline phosphatase activity was observed in Lnk-/- cultures. These data suggest that both direct effects on OB and OC as well as indirect effects of MK in regulating OB contributes to the observed high bone mass. J. Cell. Biochem. 118: 2231-2240, 2017.en_US
dc.eprint.versionAuthor's manuscripten_US
dc.identifier.citationOlivos, D. J., 3rd, Alvarez, M., Cheng, Y. H., Hooker, R. A., Ciovacco, W. A., Bethel, M., … Kacena, M. A. (2017). Lnk Deficiency Leads to TPO-Mediated Osteoclastogenesis and Increased Bone Mass Phenotype. Journal of cellular biochemistry, 118(8), 2231–2240. doi:10.1002/jcb.25874en_US
dc.identifier.urihttps://hdl.handle.net/1805/19138
dc.language.isoen_USen_US
dc.publisherWileyen_US
dc.relation.isversionof10.1002/jcb.25874en_US
dc.relation.journalJournal of Cellular Biochemistryen_US
dc.rightsPublisher Policyen_US
dc.sourcePMCen_US
dc.subjectLnken_US
dc.subjectOsteoclastsen_US
dc.subjectMegakaryocytesen_US
dc.subjectOsteoblastsen_US
dc.subjectBone massen_US
dc.subjectBone phenotypeen_US
dc.titleLnk Deficiency Leads to TPO-Mediated Osteoclastogenesis and Increased Bone Mass Phenotypeen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
nihms842003.pdf
Size:
961.99 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: