A Potential Role for Excess Tissue Iron in Development of Cardiovascular Delayed Effects of Acute Radiation Exposure

Date
2020-11
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Wolters Kluwer
Abstract

Murine hematopoietic-acute radiation syndrome (H-ARS) survivors of total body radiation (TBI) have a significant loss of heart vessel endothelial cells, along with increased tissue iron, as early as 4 months post-TBI. The goal of the current study was to determine the possible role for excess tissue iron in the loss of coronary artery endothelial cells. Experiments utilized the H-ARS mouse model with gamma radiation exposure of 853 cGy (LD50/30) and time points from 1 to 12 weeks post-TBI. Serum iron was elevated at 1 week post-TBI, peaked at 2 weeks, and returned to non-irradiated control values by 4 weeks post-TBI. A similar trend was seen for transferrin saturation, and both results correlated inversely with red blood cell number. Perls’ Prussian Blue staining used to detect iron deposition in heart tissue sections showed myocardial iron was present as early as 2 weeks following irradiation. Pretreatment of mice with the iron chelator deferiprone decreased tissue iron, but not serum iron, at 2 weeks. Coronary artery endothelial cell density was significantly decreased as early as two weeks vs. non-irradiated controls (P<0.05), and the reduced density persisted to 12 weeks after irradiation. Deferiprone treatment of irradiated mice prevented the decrease in endothelial cell density at 2 and 4 weeks post-TBI compared to irradiated, non-treated mice (P<0.03). Taken together, the results suggest excess tissue iron contributes to endothelial cell loss early following TBI and may be a significant event impacting the development of delayed effects of acute radiation exposure.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Miller SJ, Chittajallu S, Sampson C, Fisher A, Unthank JL, Orschell CM. A Potential Role for Excess Tissue Iron in Development of Cardiovascular Delayed Effects of Acute Radiation Exposure. Health Phys. 2020;119(5):659-665. doi:10.1097/HP.0000000000001314
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Health Physics
Rights
Publisher Policy
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Author's manuscript
Full Text Available at
This item is under embargo {{howLong}}