Structure Based Identification and Characterization of Flavonoids That Disrupt Human Papillomavirus-16 E6 Function

dc.contributor.authorCherry, Jonathan J.
dc.contributor.authorRietz, Anne
dc.contributor.authorMalinkevich, Anna
dc.contributor.authorLiu, Yuqi
dc.contributor.authorXie, Meng
dc.contributor.authorBartolowits, Matthew
dc.contributor.authorDavisson, V. Jo
dc.contributor.authorBaleja, James D.
dc.contributor.authorAndrophy, Elliot J.
dc.contributor.departmentDermatology, School of Medicine
dc.date.accessioned2025-04-24T12:20:16Z
dc.date.available2025-04-24T12:20:16Z
dc.date.issued2013-12-23
dc.description.abstractExpression and function of the human papillomavirus (HPV) early protein 6 (E6) is necessary for viral replication and oncogenesis in cervical cancers. HPV E6 targets the tumor suppressor protein p53 for degradation. To achieve this, "high-risk" HPV E6 proteins bind to and modify the target specificity of the ubiquitin ligase E6AP (E6 associated protein). This E6-dependent loss of p53 enables the virus to bypass host cell defenses and facilitates virally induced activation of the cell cycle progression during viral replication. Disruption of the interaction between E6 and E6AP and stabilization of p53 should decrease viability and proliferation of HPV positive cells. A new in vitro high-throughput binding assay was developed to assay binding between HPV-16 E6 and E6AP and to identify compounds that inhibit this interaction. The compound luteolin emerged from the screen and a library of novel flavones based on its structure was synthesized and characterized using this in vitro binding assay. The compounds identified in this study disrupt the E6/E6AP interaction, increase the levels of p53 and p21(Cip1/Waf1), and decrease proliferation of HPV positive cell lines. The new class of flavonoid E6 inhibitors displays a high degree of specificity for HPV positive cells. Docking analyses suggest that these compounds bind in a hydrophobic pocket at the interface between E6 and E6AP and mimic the leucines in the conserved α-helical motif of E6AP. The activity and specificity of these compounds represent a promising new lead for development as an antiviral therapy in the treatment of HPV infection and cervical cancer.
dc.eprint.versionFinal published version
dc.identifier.citationCherry JJ, Rietz A, Malinkevich A, et al. Structure based identification and characterization of flavonoids that disrupt human papillomavirus-16 E6 function. PLoS One. 2013;8(12):e84506. Published 2013 Dec 23. doi:10.1371/journal.pone.0084506
dc.identifier.urihttps://hdl.handle.net/1805/47410
dc.language.isoen_US
dc.publisherPublic Library of Science
dc.relation.isversionof10.1371/journal.pone.0084506
dc.relation.journalPLoS One
dc.rightsAttribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourcePMC
dc.subjectFlavonoids
dc.subjectViral oncogene proteins
dc.subjectUterine cervical neoplasms
dc.subjectRepressor proteins
dc.titleStructure Based Identification and Characterization of Flavonoids That Disrupt Human Papillomavirus-16 E6 Function
dc.typeArticle
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Cherry2013Structure-CCBY.pdf
Size:
4.3 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.04 KB
Format:
Item-specific license agreed upon to submission
Description: