Understanding metric-related pitfalls in image analysis validation

dc.contributor.authorReinke, Annika
dc.contributor.authorTizabi, Minu D.
dc.contributor.authorBaumgartner, Michael
dc.contributor.authorEisenmann, Matthias
dc.contributor.authorHeckmann-Nötzel, Doreen
dc.contributor.authorKavur, A. Emre
dc.contributor.authorRädsch, Tim
dc.contributor.authorSudre, Carole H.
dc.contributor.authorAcion, Laura
dc.contributor.authorAntonelli, Michela
dc.contributor.authorArbel, Tal
dc.contributor.authorBakas, Spyridon
dc.contributor.authorBenis, Arriel
dc.contributor.authorBlaschko, Matthew B.
dc.contributor.authorBuettner, Florian
dc.contributor.authorCardoso, M. Jorge
dc.contributor.authorCheplygina, Veronika
dc.contributor.authorChen, Jianxu
dc.contributor.authorChristodoulou, Evangelia
dc.contributor.authorCimini, Beth A.
dc.contributor.authorCollins, Gary S.
dc.contributor.authorFarahani, Keyvan
dc.contributor.authorFerrer, Luciana
dc.contributor.authorGaldran, Adrian
dc.contributor.authorVan Ginneken, Bram
dc.contributor.authorGlocker, Ben
dc.contributor.authorGodau, Patrick
dc.contributor.authorHaase, Robert
dc.contributor.authorHashimoto, Daniel A.
dc.contributor.authorHoffman, Michael M.
dc.contributor.authorHuisman, Merel
dc.contributor.authorIsensee, Fabian
dc.contributor.authorJannin, Pierre
dc.contributor.authorKahn, Charles E.
dc.contributor.authorKainmueller, Dagmar
dc.contributor.authorKainz, Bernhard
dc.contributor.authorKarargyris, Alexandros
dc.contributor.authorKarthikesalingam, Alan
dc.contributor.authorKenngott, Hannes
dc.contributor.authorKleesiek, Jens
dc.contributor.authorKofler, Florian
dc.contributor.authorKooi, Thijs
dc.contributor.authorKopp-Schneider, Annette
dc.contributor.authorKozubek, Michal
dc.contributor.authorKreshuk, Anna
dc.contributor.authorKurc, Tahsin
dc.contributor.authorLandman, Bennett A.
dc.contributor.authorLitjens, Geert
dc.contributor.authorMadani, Amin
dc.contributor.authorMaier-Hein, Klaus
dc.contributor.authorMartel, Anne L.
dc.contributor.authorMattson, Peter
dc.contributor.authorMeijering, Erik
dc.contributor.authorMenze, Bjoern
dc.contributor.authorMoons, Karel G. M.
dc.contributor.authorMüller, Henning
dc.contributor.authorNichyporuk, Brennan
dc.contributor.authorNickel, Felix
dc.contributor.authorPetersen, Jens
dc.contributor.authorRafelski, Susanne M.
dc.contributor.authorRajpoot, Nasir
dc.contributor.authorReyes, Mauricio
dc.contributor.authorRiegler, Michael A.
dc.contributor.authorRieke, Nicola
dc.contributor.authorSaez-Rodriguez, Julio
dc.contributor.authorSánchez, Clara I.
dc.contributor.authorShetty, Shravya
dc.contributor.authorSummers, Ronald M.
dc.contributor.authorTaha, Abdel A.
dc.contributor.authorTiulpin, Aleksei
dc.contributor.authorTsaftaris, Sotirios A.
dc.contributor.authorVan Calster, Ben
dc.contributor.authorVaroquaux, Gaël
dc.contributor.authorYaniv, Ziv R.
dc.contributor.authorJäger, Paul F.
dc.contributor.authorMaier-Hein, Lena
dc.contributor.departmentPathology and Laboratory Medicine, School of Medicine
dc.date.accessioned2023-11-21T09:36:33Z
dc.date.available2023-11-21T09:36:33Z
dc.date.issued2023-09-25
dc.description.abstractValidation metrics are key for the reliable tracking of scientific progress and for bridging the current chasm between artificial intelligence (AI) research and its translation into practice. However, increasing evidence shows that particularly in image analysis, metrics are often chosen inadequately in relation to the underlying research problem. This could be attributed to a lack of accessibility of metric-related knowledge: While taking into account the individual strengths, weaknesses, and limitations of validation metrics is a critical prerequisite to making educated choices, the relevant knowledge is currently scattered and poorly accessible to individual researchers. Based on a multi-stage Delphi process conducted by a multidisciplinary expert consortium as well as extensive community feedback, the present work provides the first reliable and comprehensive common point of access to information on pitfalls related to validation metrics in image analysis. Focusing on biomedical image analysis but with the potential of transfer to other fields, the addressed pitfalls generalize across application domains and are categorized according to a newly created, domain-agnostic taxonomy. To facilitate comprehension, illustrations and specific examples accompany each pitfall. As a structured body of information accessible to researchers of all levels of expertise, this work enhances global comprehension of a key topic in image analysis validation.
dc.description.versionPre-Print
dc.identifier.citationReinke A, Tizabi MD, Baumgartner M, et al. Understanding metric-related pitfalls in image analysis validation. Preprint. ArXiv. 2023;arXiv:2302.01790v3. Published 2023 Sep 25.
dc.identifier.urihttps://hdl.handle.net/1805/37185
dc.language.isoen_US
dc.publisherArXiv
dc.relation.isversionof10.48550/arXiv.2302.01790
dc.rightsAttribution 4.0 Internationalen
dc.rights.urihttps://creativecommons.org/licenses/by/4.0
dc.sourceArXiv
dc.subjectBiological imaging
dc.subjectBiomedical image processing
dc.subjectChallenges
dc.subjectClassification
dc.subjectComputer vision
dc.subjectDetection
dc.subjectEvaluation
dc.subjectGood scientific practice
dc.subjectInstance segmentation
dc.subjectLocalization
dc.subjectMedical imaging
dc.subjectMetrics
dc.subjectPitfalls
dc.subjectSegmentation
dc.subjectSemantic segmentation
dc.subjectValidation
dc.titleUnderstanding metric-related pitfalls in image analysis validation
dc.typeArticle
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
nihpp-2302.01790v3.pdf
Size:
31.61 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: