Basal ganglia role in learning rewarded actions and executing previously learned choices: Healthy and diseased states

dc.contributor.authorMulcahy, Garrett
dc.contributor.authorAtwood, Brady
dc.contributor.authorKuznetsov, Alexey
dc.contributor.departmentPsychiatry, School of Medicineen_US
dc.date.accessioned2020-04-13T14:56:55Z
dc.date.available2020-04-13T14:56:55Z
dc.date.issued2020-02-10
dc.description.abstractThe basal ganglia (BG) is a collection of nuclei located deep beneath the cerebral cortex that is involved in learning and selection of rewarded actions. Here, we analyzed BG mechanisms that enable these functions. We implemented a rate model of a BG-thalamo-cortical loop and simulated its performance in a standard action selection task. We have shown that potentiation of corticostriatal synapses enables learning of a rewarded option. However, these synapses became redundant later as direct connections between prefrontal and premotor cortices (PFC-PMC) were potentiated by Hebbian learning. After we switched the reward to the previously unrewarded option (reversal), the BG was again responsible for switching to the new option. Due to the potentiated direct cortical connections, the system was biased to the previously rewarded choice, and establishing the new choice required a greater number of trials. Guided by physiological research, we then modified our model to reproduce pathological states of mild Parkinson's and Huntington's diseases. We found that in the Parkinsonian state PMC activity levels become extremely variable, which is caused by oscillations arising in the BG-thalamo-cortical loop. The model reproduced severe impairment of learning and predicted that this is caused by these oscillations as well as a reduced reward prediction signal. In the Huntington state, the potentiation of the PFC-PMC connections produced better learning, but altered BG output disrupted expression of the rewarded choices. This resulted in random switching between rewarded and unrewarded choices resembling an exploratory phase that never ended. Along with other computational studies, our results further reconcile the apparent contradiction between the critical involvement of the BG in execution of previously learned actions and yet no impairment of these actions after BG output is ablated by lesions or deep brain stimulation. We predict that the cortico-BG-thalamo-cortical loop conforms to previously learned choice in healthy conditions, but impedes those choices in disease states.en_US
dc.eprint.versionFinal published versionen_US
dc.identifier.citationMulcahy, G., Atwood, B., & Kuznetsov, A. (2020). Basal ganglia role in learning rewarded actions and executing previously learned choices: Healthy and diseased states. PloS one, 15(2), e0228081. https://doi.org/10.1371/journal.pone.0228081en_US
dc.identifier.urihttps://hdl.handle.net/1805/22547
dc.language.isoen_USen_US
dc.publisherPublic Library of Scienceen_US
dc.relation.isversionof10.1371/journal.pone.0228081en_US
dc.relation.journalPloS Oneen_US
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourcePMCen_US
dc.subjectLearningen_US
dc.subjectUnrewarded behavioren_US
dc.subjectRewarded behavioren_US
dc.subjectHealthy statesen_US
dc.subjectBasal gangliaen_US
dc.subjectCortico-BG-thalamo-cortical loopen_US
dc.subjectDisease statesen_US
dc.titleBasal ganglia role in learning rewarded actions and executing previously learned choices: Healthy and diseased statesen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
pone.0228081.pdf
Size:
3.32 MB
Format:
Adobe Portable Document Format
Description:
Main article
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: