Convergence of ray sequences of Frobenius-Padé approximants

dc.contributor.authorAptekarev, Alexander I.
dc.contributor.authorBogolubsky, Alexey I.
dc.contributor.authorYattselev, Maxim L.
dc.contributor.departmentMathematical Sciences, School of Scienceen_US
dc.date.accessioned2018-01-11T20:10:28Z
dc.date.available2018-01-11T20:10:28Z
dc.date.issued2017
dc.description.abstractLet $\widehat\sigma$ be a Cauchy transform of a possibly complex-valued Borel measure $\sigma$ and $\{p_n\}$ a system of orthonormal polynomials with respect to a measure $\mu$, where $\operatorname{supp}(\mu)\cap\operatorname{supp}(\sigma)=\varnothing$. An $(m,n)$th Frobenius-Padé approximant to $\widehat\sigma$ is a rational function $P/Q$, ${\deg(P)\leq m}$, $\deg(Q)\leq n$, such that the first $m+n+1$ Fourier coefficients of the remainder function $Q\widehat\sigma-P$ vanish when the form is developed into a series with respect to the polynomials $p_n$. We investigate the convergence of the Frobenius-Padé approximants to $\widehat\sigma$ along ray sequences ${n/(n+m+1)\to c>0}$, $n-1\leq m$, when $\mu$ and $\sigma$ are supported on intervals of the real line and their Radon-Nikodym derivatives with respect to the arcsine distribution of the corresponding interval are holomorphic functions.en_US
dc.eprint.versionAuthor's manuscripten_US
dc.identifier.citationAptekarev, A. I., Bogolyubskii, A. I., & Yattselev, M. L. (2017). Convergence of ray sequences of Frobenius-Padé approximants. Sbornik: Mathematics, 208(3), 313. https://doi.org/10.1070/SM8632en_US
dc.identifier.urihttps://hdl.handle.net/1805/14999
dc.language.isoenen_US
dc.publisherIOPen_US
dc.relation.isversionof10.1070/SM8632en_US
dc.relation.journalSbornik: Mathematicsen_US
dc.rightsPublisher Policyen_US
dc.sourceAuthoren_US
dc.subjectconvergenceen_US
dc.subjectray sequencesen_US
dc.subjectFrobenius-Padé approximantsen_US
dc.titleConvergence of ray sequences of Frobenius-Padé approximantsen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Aptekarev_2017_szego.pdf
Size:
354.01 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: