Convergence of ray sequences of Frobenius-Padé approximants
dc.contributor.author | Aptekarev, Alexander I. | |
dc.contributor.author | Bogolubsky, Alexey I. | |
dc.contributor.author | Yattselev, Maxim L. | |
dc.contributor.department | Mathematical Sciences, School of Science | en_US |
dc.date.accessioned | 2018-01-11T20:10:28Z | |
dc.date.available | 2018-01-11T20:10:28Z | |
dc.date.issued | 2017 | |
dc.description.abstract | Let $\widehat\sigma$ be a Cauchy transform of a possibly complex-valued Borel measure $\sigma$ and $\{p_n\}$ a system of orthonormal polynomials with respect to a measure $\mu$, where $\operatorname{supp}(\mu)\cap\operatorname{supp}(\sigma)=\varnothing$. An $(m,n)$th Frobenius-Padé approximant to $\widehat\sigma$ is a rational function $P/Q$, ${\deg(P)\leq m}$, $\deg(Q)\leq n$, such that the first $m+n+1$ Fourier coefficients of the remainder function $Q\widehat\sigma-P$ vanish when the form is developed into a series with respect to the polynomials $p_n$. We investigate the convergence of the Frobenius-Padé approximants to $\widehat\sigma$ along ray sequences ${n/(n+m+1)\to c>0}$, $n-1\leq m$, when $\mu$ and $\sigma$ are supported on intervals of the real line and their Radon-Nikodym derivatives with respect to the arcsine distribution of the corresponding interval are holomorphic functions. | en_US |
dc.eprint.version | Author's manuscript | en_US |
dc.identifier.citation | Aptekarev, A. I., Bogolyubskii, A. I., & Yattselev, M. L. (2017). Convergence of ray sequences of Frobenius-Padé approximants. Sbornik: Mathematics, 208(3), 313. https://doi.org/10.1070/SM8632 | en_US |
dc.identifier.uri | https://hdl.handle.net/1805/14999 | |
dc.language.iso | en | en_US |
dc.publisher | IOP | en_US |
dc.relation.isversionof | 10.1070/SM8632 | en_US |
dc.relation.journal | Sbornik: Mathematics | en_US |
dc.rights | Publisher Policy | en_US |
dc.source | Author | en_US |
dc.subject | convergence | en_US |
dc.subject | ray sequences | en_US |
dc.subject | Frobenius-Padé approximants | en_US |
dc.title | Convergence of ray sequences of Frobenius-Padé approximants | en_US |
dc.type | Article | en_US |