Thiol-norbornene photo-click hydrogels for tissue engineering applications.

Date
2015-02-20
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Wiley
Abstract

Thiol-norbornene (thiol-ene) photo-click hydrogels have emerged as a diverse material system for tissue engineering applications. These hydrogels are cross-linked through light mediated orthogonal reactions between multi-functional norbornene-modified macromers (e.g., poly(ethylene glycol), hyaluronic acid, gelatin) and sulfhydryl-containing linkers (e.g., dithiothreitol, PEG-dithiol, bis-cysteine peptides) using low concentration of photoinitiator. The gelation of thiol-norbornene hydrogels can be initiated by long-wave UV light or visible light without additional co-initiator or co-monomer. The cross-linking and degradation behaviors of thiol-norbornene hydrogels are controlled through material selections, whereas the biophysical and biochemical properties of the gels are easily and independently tuned owing to the orthogonal reactivity between norbornene and thiol moieties. Uniquely, the cross-linking of step-growth thiol-norbornene hydrogels is not oxygen-inhibited, therefore the gelation is much faster and highly cytocompatible compared with chain-growth polymerized hydrogels using similar gelation conditions. These hydrogels have been prepared as tunable substrates for 2D cell culture, as microgels or bulk gels for affinity-based or protease-sensitive drug delivery, and as scaffolds for 3D cell culture. Reports from different laboratories have demonstrated the broad utility of thiol-norbornene hydrogels in tissue engineering and regenerative medicine applications, including valvular and vascular tissue engineering, liver and pancreas-related tissue engineering, neural regeneration, musculoskeletal (bone and cartilage) tissue regeneration, stem cell culture and differentiation, as well as cancer cell biology. This article provides an up-to-date overview on thiol-norbornene hydrogel cross-linking and degradation mechanisms, tunable material properties, as well as the use of thiol-norbornene hydrogels in drug delivery and tissue engineering applications.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Lin, C.-C., Ki, C. S., & Shih, H. (2015). Thiol-norbornene photo-click hydrogels for tissue engineering applications. Journal of Applied Polymer Science, 132(8). http://doi.org/10.1002/app.41563
ISSN
0021-8995 1097-4628
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Journal of applied polymer science
Rights
Publisher's policy
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Author's manuscript
Full Text Available at
This item is under embargo {{howLong}}