Bayesian Modeling of COVID-19 Positivity Rate -- the Indiana experience

dc.contributor.authorBoukai, Ben
dc.contributor.authorWang, Jiayue
dc.contributor.departmentMathematical Sciences, School of Scienceen_US
dc.date.accessioned2020-08-04T16:16:10Z
dc.date.available2020-08-04T16:16:10Z
dc.date.issued2020-07-09
dc.description.abstractIn this short technical report we model, within the Bayesian framework, the rate of positive tests reported by the the State of Indiana, accounting also for the substantial variability (and overdispeartion) in the daily count of the tests performed. The approach we take, results with a simple procedure for prediction, a posteriori, of this rate of ’positivity’ and allows for an easy and a straightforward adaptation by any agency tracking daily results of COVID-19 tests. The numerical results provided herein were obtained via an updatable R Markdown document.en_US
dc.identifier.citationBoukai, B., & Wang, J. (2020). Bayesian Modeling of COVID-19 Positivity Rate—The Indiana experience. ArXiv. http://arxiv.org/abs/2007.06541en_US
dc.identifier.urihttps://hdl.handle.net/1805/23526
dc.language.isoen_USen_US
dc.publisherarXiven_US
dc.relation.journalarXiven_US
dc.sourceArXiven_US
dc.subjectCOVID-19en_US
dc.subjectTestingen_US
dc.subjectPositivity Rateen_US
dc.subjectBayesianen_US
dc.subjectIndianaen_US
dc.titleBayesian Modeling of COVID-19 Positivity Rate -- the Indiana experienceen_US
dc.typePreprinten_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Boukai2020Bayesian.pdf
Size:
190.68 KB
Format:
Adobe Portable Document Format
Description:
Preprint
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: