Incremental eigenpair computation for graph Laplacian matrices: theory and applications

dc.contributor.authorChen, Pin-Yu
dc.contributor.authorZhang, Baichuan
dc.contributor.authorAl Hasan, Mohammad
dc.contributor.departmentComputer and Information Science, School of Scienceen_US
dc.date.accessioned2018-08-30T18:28:49Z
dc.date.available2018-08-30T18:28:49Z
dc.date.issued2018-12
dc.description.abstractThe smallest eigenvalues and the associated eigenvectors (i.e., eigenpairs) of a graph Laplacian matrix have been widely used for spectral clustering and community detection. However, in real-life applications, the number of clusters or communities (say, K) is generally unknown a priori. Consequently, the majority of the existing methods either choose K heuristically or they repeat the clustering method with different choices of K and accept the best clustering result. The first option, more often, yields suboptimal result, while the second option is computationally expensive. In this work, we propose an incremental method for constructing the eigenspectrum of the graph Laplacian matrix. This method leverages the eigenstructure of graph Laplacian matrix to obtain the Kth smallest eigenpair of the Laplacian matrix given a collection of all previously computeden_US
dc.eprint.versionAuthor's manuscripten_US
dc.identifier.citationChen, P.-Y., Zhang, B., & Hasan, M. A. (2018). Incremental eigenpair computation for graph Laplacian matrices: theory and applications. Social Network Analysis and Mining, 8(1), 4. https://doi.org/10.1007/s13278-017-0481-yen_US
dc.identifier.urihttps://hdl.handle.net/1805/17254
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.isversionof10.1007/s13278-017-0481-yen_US
dc.relation.journalSocial Network Analysis and Miningen_US
dc.rightsPublisher Policyen_US
dc.sourceAuthoren_US
dc.subjectgraph mining and analysisen_US
dc.subjectgraph laplacianen_US
dc.subjectincremental eigenpair computationen_US
dc.titleIncremental eigenpair computation for graph Laplacian matrices: theory and applicationsen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Chen_2017_incremental.pdf
Size:
1.22 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: