Fabry-Perot cavity resonance enabling highly polarization-sensitive double-layer gold grating

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2018-10-03
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Springer Nature
Abstract

We present experimental and theoretical investigations on the polarization properties of a single- and a double-layer gold (Au) grating, serving as a wire grid polarizer. Two layers of Au gratings form a cavity that effectively modulates the transmission and reflection of linearly polarized light. Theoretical calculations based on a transfer matrix method reveals that the double-layer Au grating structure creates an optical cavity exhibiting Fabry-Perot (FP) resonance modes. As compared to a single-layer grating, the FP cavity resonance modes of the double-layer grating significantly enhance the transmission of the transverse magnetic (TM) mode, while suppressing the transmission of the transverse electric (TE) mode. As a result, the extinction ratio of TM to TE transmission for the double-layer grating structure is improved by a factor of approximately 8 in the mid-wave infrared region of 3.4-6 μm. Furthermore, excellent infrared imagery is obtained with over a 600% increase in the ratio of the TM-output voltage (Vθ = 0°) to TE-output voltage (Vθ = 90°). This double-layer Au grating structure has great potential for use in polarimetric imaging applications due to its superior ability to resolve linear polarization signatures.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Hwang, J., Oh, B., Kim, Y., Silva, S., Kim, J. O., Czaplewski, D. A., … Lee, S. J. (2018). Fabry-Perot cavity resonance enabling highly polarization-sensitive double-layer gold grating. Scientific reports, 8(1), 14787. doi:10.1038/s41598-018-32158-y
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Scientific Reports
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}