HIV-1 Coinfection Profoundly Alters Intrahepatic Chemokine but Not Inflammatory Cytokine Profiles in HCV-Infected Subjects
Date
Language
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Abstract
The pathogenesis of accelerated liver damage in subjects coinfected with hepatitis C virus (HCV) and human immunodeficiency virus type 1 (HIV-1) remains largely unknown. Recent studies suggest that ongoing chronic liver inflammation is responsible for the liver injury in HCV-infected patients. We aimed to determine whether HIV-1 coinfection altered intrahepatic inflammatory profiles in HCV infection, thereby hastening liver damage. We used a real-time RT-PCR-based array to comparatively analyze intrahepatic inflammation gene profiles in liver biopsy specimens from HCV-infected (n = 16), HCV/HIV-1-coinfected (n = 8) and uninfected (n = 8) individuals. We then used human hepatocytes to study the molecular mechanisms underlying alternations of the inflammatory profiles. Compared with uninfected individuals, HCV infection and HCV/HIV-1 coinfection markedly altered expression of 59.5% and 50.0% of 84 inflammation-related genes tested, respectively. Among these genes affected, HCV infection up-regulated the expression of 24 genes and down-regulated the expression of 26 genes, whereas HCV/HIV-1 coinfection up-regulated the expression of 21 genes and down-regulated the expression of 21 genes. Compared with HCV infection, HCV/HIV-1 coinfection did not dramatically affect intrahepatic gene expression profiles of cytokines and their receptors, but profoundly altered expression of several chemokine genes including up-regulation of the CXCR3-associated chemokines. Human hepatocytes produced these chemokines in response to virus-related microbial translocation, viral protein stimulation, and antiviral immune responses.
Conclusions: HIV-1 coinfection profoundly alters intrahepatic chemokine but not cytokine profiles in HCV-infected subjects. The altered chemokines may orchestrate the tissue-specific and cell-selective trafficking of immune cells and autoimmunity to accelerate liver disease in HCV/HIV-1 coinfection.