miR‐145 transgenic mice develop cardiopulmonary complications leading to postnatal death

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2021-09
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Wiley
Abstract

Background: Both downregulation and elevation of microRNA miR-145 has been linked to an array of cardiopulmonary phenotypes, and a host of studies suggest that it is an important contributor in governing the differentiation of cardiac and vascular smooth muscle cell types.

Methods and results: To better understand the role of elevated miR-145 in utero within the cardiopulmonary system, we utilized a transgene to overexpress miR-145 embryonically in mice and examined the consequences of this lineage-restricted enhanced expression. Overexpression of miR-145 has detrimental effects that manifest after birth as overexpressor mice are unable to survive beyond postnatal day 18. The miR-145 expressing mice exhibit respiratory distress and fail to thrive. Gross analysis revealed an enlarged right ventricle, and pulmonary dysplasia with vascular hypertrophy. Single cell sequencing of RNA derived from lungs of control and miR-145 transgenic mice demonstrated that miR-145 overexpression had global effects on the lung with an increase in immune cells and evidence of leukocyte extravasation associated with vascular inflammation.

Conclusions: These data provide novel findings that demonstrate a pathological role for miR-145 in the cardiopulmonary system that extends beyond its normal function in governing smooth muscle differentiation.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Thomas S, Manivannan S, Sawant D, et al. miR-145 transgenic mice develop cardiopulmonary complications leading to postnatal death. Physiol Rep. 2021;9(17):e15013. doi:10.14814/phy2.15013
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Physiological Reports
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
Full Text Available at
This item is under embargo {{howLong}}