Pseudocapacitive contribution in amorphous FeVO4 cathode for lithium-ion batteries
Date
Language
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Abstract
Amorphous iron vanadate (FeVO4 ) nanoparticle cathode materials are successfully synthesized through a facile, efficient, and highyielding ion exchange-liquid precipitation method. The composition, structure, morphology, surface area, and electrochemical performances of the synthesized materials have been characterized by the Thermogravimetric-Differential scanning calorimetry (TGDSC), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), X-ray photon spectroscopy (XPS), Brunauer?Emmet?Teller (BET), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), respectively. The electrochemical performance results indicate that the amorphous FeVO4 delivers a specific capacity as high as 275 mAh g-1 at 0.1 C in a voltage range of 1.5?4.5 V. The excellent electrochemical performances can be ascribed to the pseudocapacitive behavior. The systematic kinetic analysis demonstrates that the pseudocapacitive charge storage allows the amorphous FVO cathode delivering the excellent high specific capacity.