Stereoselective Metabolism of Bupropion to Active Metabolites in Cellular Fractions of Human Liver and Intestine

Date
2023
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
American Society for Pharmacology and Experimental Therapeutics (ASPET)
Abstract

Striking stereoselective disposition of the antidepressant and smoking cessation aid bupropion (BUP) and its active metabolites observed clinically influence patients' response to BUP therapy and its clinically important drug-drug interactions (DDI) with CYP2D6 substrates. However, understanding of the biochemical mechanisms responsible is incomplete. This study comprehensively examined hepatic and extrahepatic stereoselective metabolism of BUP in vitro Racemic-, R-, and S-BUP were incubated separately with pooled cellular fractions of human liver [microsomes (HLMs), S9 fractions (HLS9s), and cytosols (HLCs)] and intestinal [microsomes (HIMs), S9 fractions (HIS9s), and cytosols (HICs)] and cofactors. Formations of diastereomers of 4-hydroxyBUP (OHBUP), threohydroBUP (THBUP), and erythrohydroBUP (EHBUP) were quantified using a novel chiral ultra-high performance liquid chromatography/tandem mass spectrometry method. Racemic BUP (but not R- or S-BUP) was found suitable to determine stereoselective metabolism of BUP; both enantiomers showed complete racemization. Compared with that of RR-THBUP, the in vitro intrinsic clearance (Clint) for the formation of SS-THBUP was 42-, 19-, and 8.3-fold higher in HLMs, HLS9 fractions, and HLCs, respectively; Clint for the formation of SS-OHBUP and RS-EHBUP was also higher (2.7- to 3.9-fold) than their R-derived counterparts. In cellular fractions of human intestine, ≥ 95% of total reduction was accounted by the formation of RR-THBUP. Ours is the first to demonstrate marked stereoselective reduction of BUP in HLCs, HIMs, HIS9 fractions, and HICs, providing the first evidence for tissue- and cellular fraction-dependent stereoselective metabolism of BUP. These data may serve as the first critical step toward understanding factors dictating BUP's stereoselective disposition, effects, and DDI risks.

SIGNIFICANCE STATEMENT: This work provides a deeper insight into bupropion (BUP) stereoselective oxidation and reduction to active metabolites in cellular fractions of human liver and intestine tissues. The results demonstrate tissue- and cellular fraction-dependent stereospecific metabolism of BUP. These data may improve prediction of BUP stereoselective disposition and understanding of BUP's effects and CYP2D6-dependent drug-drug interaction in vivo.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Bamfo NO, Lu JB, Desta Z. Stereoselective Metabolism of Bupropion to Active Metabolites in Cellular Fractions of Human Liver and Intestine. Drug Metab Dispos. 2023;51(1):54-66. doi:10.1124/dmd.122.000867
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Drug Metabolism and Disposition
Rights
Publisher Policy
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
This item is under embargo {{howLong}}