Brucella suppress STING expression via miR-24 to enhance infection

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2020-10-27
Language
English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
PloS
Abstract

Brucellosis, caused by a number of Brucella species, remains the most prevalent zoonotic disease worldwide. Brucella establish chronic infections within host macrophages despite triggering cytosolic innate immune sensors, including Stimulator of Interferon Genes (STING), which potentially limit infection. In this study, STING was required for control of chronic Brucella infection in vivo. However, early during infection, Brucella down-regulated STING mRNA and protein. Down-regulation occurred post-transcriptionally, required live bacteria, the Brucella type IV secretion system, and was independent of host IRE1-RNase activity. STING suppression occurred in MyD88-/- macrophages and was not induced by Toll-like receptor agonists or purified Brucella lipopolysaccharide (LPS). Rather, Brucella induced a STING-targeting microRNA, miR-24-2, in a type IV secretion system-dependent manner. Furthermore, STING downregulation was inhibited by miR-24 anti-miRs and in Mirn23a locus-deficient macrophages. Failure to suppress STING expression in Mirn23a-/- macrophages correlated with diminished Brucella replication, and was rescued by exogenous miR-24. Mirn23a-/- mice were also more resistant to splenic colonization one week post infection. Anti-miR-24 potently suppressed replication in wild type, but much less in STING-/- macrophages, suggesting most of the impact of miR-24 induction on replication occurred via STING suppression. In summary, Brucella sabotages cytosolic surveillance by miR-24-dependent suppression of STING expression; post-STING activation “damage control” via targeted STING destruction may enable establishment of chronic infection., Cytosolic pattern recognition receptors, such as the nucleotide-activated STING molecule, play a critical role in the innate immune system by detecting the presence of intracellular invaders. Brucella bacterial species establish chronic infections in macrophages despite initially activating STING. STING participates in the control of Brucella infection, as mice or cells lacking STING show a higher burden of Brucella infection. However, we have found that early following infection, Brucella upregulates a microRNA, miR-24, that targets the STING messenger RNA, resulting in lower STING levels. Dead bacteria or bacteria lacking a functional type IV secretion system were defective at upregulating miR-24 and STING suppression, suggesting an active bacteria-driven process. Failure to upregulate miR-24 and suppress STING greatly compromised the capacity of Brucella to replicate inside macrophages and in mice. Thus, although Brucella initially activate STING during infection, the ensuing STING downregulation serves as a “damage control” mechanism, enabling intracellular infection. Viruses have long been known to target immune sensors such as STING. Our results indicate that intracellular bacterial pathogens also directly target innate immune receptors to enhance their infectious success.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Khan, M., Harms, J. S., Liu, Y., Eickhoff, J., Tan, J. W., Hu, T., Cai, F., Guimaraes, E., Oliveira, S. C., Dahl, R., Cheng, Y., Gutman, D., Barber, G. N., Splitter, G. A., & Smith, J. A. (2020). Brucella suppress STING expression via miR-24 to enhance infection. PLoS Pathogens, 16(10), e1009020. https://doi.org/10.1371/journal.ppat.1009020
ISSN
1553-7366
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
PLoS Pathogens
Source
Publisher
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
Full Text Available at
This item is under embargo {{howLong}}