3D Printing of Human Ossicle Models for the Biofabrication of Personalized Middle Ear Prostheses

If you need an accessible version of this item, please submit a remediation request.
Date
2022-10-31
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
MDPI
Abstract

The middle ear bones (‘ossicles’) may become severely damaged due to accidents or to diseases. In these situations, the most common current treatments include replacing them with cadaver-derived ossicles, using a metal (usually titanium) prosthesis, or introducing bridges made of biocompatible ceramics. Neither of these solutions is ideal, due to the difficulty in finding or producing shape-matching replacements. However, the advent of additive manufacturing applications to biomedical problems has created the possibility of 3D-printing anatomically correct, shape- and size-personalized ossicle prostheses. To demonstrate this concept, we generated and printed several models of ossicles, as solid, porous, or soft material structures. These models were first printed with a plottable calcium phosphate/hydroxyapatite paste by extrusion on a solid support or embedded in a Carbopol hydrogel bath, followed by temperature-induced hardening. We then also printed an ossicle model with this ceramic in a porous format, followed by loading and crosslinking an alginate hydrogel within the pores, which was validated by microCT imaging. Finally, ossicle models were printed using alginate as well as a cell-containing nanocellulose-based bioink, within the supporting hydrogel bath. In selected cases, the devised workflow and the printouts were tested for repeatability. In conclusion, we demonstrate that moving beyond simplistic geometric bridges to anatomically realistic constructs is possible by 3D printing with various biocompatible materials and hydrogels, thus opening the way towards the in vitro generation of personalized middle ear prostheses for implantation.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Dairaghi J, Rogozea D, Cadle R, Bustamante J, Moldovan L, Petrache HI, Moldovan NI. 3D Printing of Human Ossicle Models for the Biofabrication of Personalized Middle Ear Prostheses. Applied Sciences. 2022; 12(21):11015. https://doi.org/10.3390/app122111015
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Applied Sciences
Source
Publisher
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
Full Text Available at
This item is under embargo {{howLong}}