Demineralization and sectioning of human kidney stones: A molecular investigation revealing the spatial heterogeneity of the stone matrix

Date
2021-01
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Wiley
Abstract

The molecular mechanisms by which kidney stones grow are largely unknown. Organic molecules from the urine combine with mineral crystals to form stones, but analysis of the stone matrix has revealed over a thousand different proteins, with no clues as to which are important for stone growth. Molecules that are present in every layer of a stone would be candidates for having an essential function, and thus the analysis of the stone matrix at a microscopic level is necessary. For this purpose, kidney stones were demineralized, sectioned, stained, and imaged by microscopy, using micro CT for precise orientation. Histological staining demonstrated heterogeneity in the density of adjacent layers within stones. Additional results also showed brilliant and unique autofluorescence patterns in decalcified nephroliths, indicating heterogeneous organic composition in adjacent layers. Regions of calcium oxalate (CaOx) stones were dissected using laser microdissection (LMD) for protein analysis. LMD of broad regions of demineralized CaOx stone sections yielded the same proteins as those found in different specimens of pulverized CaOx stones. These innovative methodologies will allow spatial mapping of protein composition within the heterogeneous stone matrix. Proteins that consistently coincide spatially with mineral deposition would be candidates for molecules essential for stone growth. This kind of analysis will be required to assess which of the thousand proteins in the stone matrix may be fundamental for stone growth.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Canela VH, Bledsoe SB, Lingeman JE, et al. Demineralization and sectioning of human kidney stones: A molecular investigation revealing the spatial heterogeneity of the stone matrix. Physiol Rep. 2021;9(1):e14658. doi:10.14814/phy2.14658
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Physiological Reports
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
Full Text Available at
This item is under embargo {{howLong}}