Geobiology reveals how human kidney stones dissolve in vivo

dc.contributor.authorSivaguru, Mayandi
dc.contributor.authorSaw, Jessia J.
dc.contributor.authorWilliams, James C. Jr.
dc.contributor.authorLieske, John C.
dc.contributor.authorKrambeck, Amy E.
dc.contributor.authorRomero, Michael F.
dc.contributor.authorChia, Nicholas
dc.contributor.authorSchwaderer, Andrew L.
dc.contributor.authorAlcalde, Reinaldo E.
dc.contributor.authorBruce, Wililam J.
dc.contributor.authorWildman, Derek E.
dc.contributor.authorFried, Glenn A.
dc.contributor.authorWerth, Charles J.
dc.contributor.authorReeder, Richard J.
dc.contributor.authorYau, Peter M.
dc.contributor.authorSanford, Robert A.
dc.contributor.authorFouke, Bruce W.
dc.contributor.departmentAnatomy and Cell Biology, IU School of Medicineen_US
dc.date.accessioned2019-04-30T18:45:41Z
dc.date.available2019-04-30T18:45:41Z
dc.date.issued2018-09-13
dc.description.abstractMore than 10% of the global human population is now afflicted with kidney stones, which are commonly associated with other significant health problems including diabetes, hypertension and obesity. Nearly 70% of these stones are primarily composed of calcium oxalate, a mineral previously assumed to be effectively insoluble within the kidney. This has limited currently available treatment options to painful passage and/or invasive surgical procedures. We analyze kidney stone thin sections with a combination of optical techniques, which include bright field, polarization, confocal and super-resolution nanometer-scale auto-fluorescence microscopy. Here we demonstrate using interdisciplinary geology and biology (geobiology) approaches that calcium oxalate stones undergo multiple events of dissolution as they crystallize and grow within the kidney. These observations open a fundamentally new paradigm for clinical approaches that include in vivo stone dissolution and identify high-frequency layering of organic matter and minerals as a template for biomineralization in natural and engineered settings.en_US
dc.identifier.citationSivaguru, M., Saw, J. J., Williams, J. C., Jr, Lieske, J. C., Krambeck, A. E., Romero, M. F., … Fouke, B. W. (2018). Geobiology reveals how human kidney stones dissolve in vivo. Scientific reports, 8(1), 13731. doi:10.1038/s41598-018-31890-9en_US
dc.identifier.urihttps://hdl.handle.net/1805/19030
dc.language.isoen_USen_US
dc.publisherSpringer Natureen_US
dc.relation.isversionof10.1038/s41598-018-31890-9en_US
dc.relation.journalScientific Reportsen_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.sourcePMCen_US
dc.subjectKidney stonesen_US
dc.subjectDiabetesen_US
dc.subjectObesityen_US
dc.subjectCalcium oxalateen_US
dc.titleGeobiology reveals how human kidney stones dissolve in vivoen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
41598_2018_Article_31890.pdf
Size:
8.1 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: