Acute Bone Loss and Infrapatellar Fat Pad Fibrosis in the Knee After an In Vivo ACL Injury in Adolescent Mice

Date
2023
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Sage
Can't use the file because of accessibility barriers? Contact us with the title of the item, permanent link, and specifics of your accommodation need.
Abstract

Background: Young patients are 6 times more likely than adults to have a primary anterior cruciate ligament (ACL) graft failure. Biological factors (ie, tunnel osteolysis) may account for up to a third of these failures. Previous evaluations of patient ACL explants indicated significant bone loss within the entheseal regions. However, it remains unknown if the degree of bone loss within the ACL insertion regions, wherein ACL grafts are fixated, exceeds that of the femoral and tibial condylar bone.

Hypothesis: Bone loss in the mineralized matrices of the femoral and tibial ACL entheses is distinct from that clinically reported across the whole knee after injury.

Study design: Controlled laboratory study.

Methods: We developed a clinically relevant in vivo mouse ACL injury model to cross-sectionally track the morphological and physiological postinjury changes within the ACL, femoral and tibial entheses, synovial joint space, and load-bearing epiphyseal cortical and trabecular bone components of the knee joint. Right ACLs of 10-week-old C57BL/6J female mice (N = 75) were injured in vivo with the contralateral ACLs serving as controls. Mice were euthanized at 1, 3, 7, 14, or 28 days after injury (n = 12/cohort). Downstream analyses included volumetric cortical and trabecular bone analyses and histopathologic assessments of the knee joint after injury. Gait analyses across all time points were also performed (n = 15 mice).

Results: The majority of the ACL injuries in mice were partial tears. The femoral and tibial cortical bone volumes were 39% and 32% lower, respectively, at 28 days after injury than those of the uninjured contralateral knees (P < .01). Trabecular bone measures demonstrated little difference between injured and control knees after injury. Across all bone measures, bone loss was similar between the injured knee condyles and ACL entheses. There was also significant inflammatory activity within the knee after injury. By 7 days after injury, synovitis and fibrosis were sigificantly elevated in the injured knee compared with the controls (P < .01), which corresponded with significantly higher osteoclast activity in bone at this time point compared with the controls. This inflammatory response signficantly persisted throughout the duration of the study (P < .01). The hindlimb gait after injury deviated from normal, but mice habitually loaded their injured knee throughout the study.

Conclusion: Bone loss was acute and persisted for 4 weeks after injury in mice. However, the authors' hypothesis was not confirmed, as bone quality was not significantly lower in the entheses compared with the condylar bone regions after injury. With relatively normal hindlimb loading but a significant physiological response after injury, bone loss in this model may be driven by inflammation.

Clinical relevance: There is persistent bone resorption and fibrotic tissue development after injury that is not resolved. Inflammatory and catabolic activity may have a significant role in the postinjury decline of bone quality in the knee.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Ahn T, Loflin BE, Nguyen NB, et al. Acute Bone Loss and Infrapatellar Fat Pad Fibrosis in the Knee After an In Vivo ACL Injury in Adolescent Mice. Am J Sports Med. 2023;51(9):2342-2356. doi:10.1177/03635465231180616
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
The American Journal of Sports Medicine
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Author's manuscript
Full Text Available at
This item is under embargo {{howLong}}