Monodromy dependence and connection formulae for isomonodromic tau functions

dc.contributor.authorIts, Alexander R.
dc.contributor.authorLisovyy, O.
dc.contributor.authorProkhorov, Andrei
dc.contributor.departmentMathematical Sciences, School of Scienceen_US
dc.date.accessioned2019-03-07T16:58:18Z
dc.date.available2019-03-07T16:58:18Z
dc.date.issued2018
dc.description.abstractWe discuss an extension of the Jimbo–Miwa–Ueno differential 1-form to a form closed on the full space of extended monodromy data of systems of linear ordinary differential equations with rational coefficients. This extension is based on the results of M. Bertola, generalizing a previous construction by B. Malgrange. We show how this 1-form can be used to solve a long-standing problem of evaluation of the connection formulae for the isomonodromic tau functions which would include an explicit computation of the relevant constant factors. We explain how this scheme works for Fuchsian systems and, in particular, calculate the connection constant for the generic Painlevé VI tau function. The result proves the conjectural formula for this constant proposed by Iorgov, Lisovyy, and Tykhyy. We also apply the method to non-Fuchsian systems and evaluate constant factors in the asymptotics of the Painlevé II tau function.en_US
dc.eprint.versionAuthor's manuscripten_US
dc.identifier.citationIts, A. R., Lisovyy, O., & Prokhorov, A. (2018). Monodromy dependence and connection formulae for isomonodromic tau functions. Duke Mathematical Journal, 167(7), 1347–1432. https://doi.org/10.1215/00127094-2017-0055en_US
dc.identifier.urihttps://hdl.handle.net/1805/18552
dc.language.isoenen_US
dc.publisherDukeen_US
dc.relation.isversionof10.1215/00127094-2017-0055en_US
dc.relation.journalDuke Mathematical Journalen_US
dc.rightsPublisher Policyen_US
dc.sourceArXiven_US
dc.subjectisomonodromic tau functionsen_US
dc.subjectmonodromy dependenceen_US
dc.subjectconnection formulaeen_US
dc.titleMonodromy dependence and connection formulae for isomonodromic tau functionsen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Its_2018_monodromy.pdf
Size:
434.68 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: