From marginal gains to clinical utility: machine learning-based percutaneous coronary intervention risk prediction models
dc.contributor.author | Qadir, Muhammad Ibtsaam | |
dc.contributor.author | Hira, Ravi S. | |
dc.contributor.author | Kolbinger, Fiona R. | |
dc.contributor.department | Biostatistics and Health Data Science, Richard M. Fairbanks School of Public Health | |
dc.date.accessioned | 2025-04-18T11:28:42Z | |
dc.date.available | 2025-04-18T11:28:42Z | |
dc.date.issued | 2025-01-16 | |
dc.eprint.version | Final published version | |
dc.identifier.citation | Qadir MI, Hira RS, Kolbinger FR. From marginal gains to clinical utility: machine learning-based percutaneous coronary intervention risk prediction models. Eur Heart J Digit Health. 2025;6(2):159-161. Published 2025 Jan 16. doi:10.1093/ehjdh/ztaf001 | |
dc.identifier.uri | https://hdl.handle.net/1805/47168 | |
dc.language.iso | en_US | |
dc.publisher | Oxford University Press | |
dc.relation.isversionof | 10.1093/ehjdh/ztaf001 | |
dc.relation.journal | European Heart Journal: Digital Health | |
dc.rights | Attribution-NonCommercial 4.0 International | en |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | |
dc.source | PMC | |
dc.subject | Percutaneous coronary intervention (PCI) | |
dc.subject | Post-procedural complications | |
dc.subject | Artificial intelligence (AI) | |
dc.title | From marginal gains to clinical utility: machine learning-based percutaneous coronary intervention risk prediction models | |
dc.type | Article |