An insulin signaling feedback loop regulates pancreas progenitor cell differentiation during islet development and regeneration

dc.contributor.authorYe, Lihua
dc.contributor.authorRobertson, Morgan A.
dc.contributor.authorMastracci, Teresa L.
dc.contributor.authorAnderson, Ryan M.
dc.contributor.departmentDepartment of Pediatrics, IU School of Medicineen_US
dc.date.accessioned2017-05-03T18:03:45Z
dc.date.available2017-05-03T18:03:45Z
dc.date.issued2016-01-15
dc.description.abstractAs one of the key nutrient sensors, insulin signaling plays an important role in integrating environmental energy cues with organism growth. In adult organisms, relative insufficiency of insulin signaling induces compensatory expansion of insulin-secreting pancreatic beta (β) cells. However, little is known about how insulin signaling feedback might influence neogenesis of β cells during embryonic development. Using genetic approaches and a unique cell transplantation system in developing zebrafish, we have uncovered a novel role for insulin signaling in the negative regulation of pancreatic progenitor cell differentiation. Blocking insulin signaling in the pancreatic progenitors hastened the expression of the essential β cell genes insulin and pdx1, and promoted β cell fate at the expense of alpha cell fate. In addition, loss of insulin signaling promoted β cell regeneration and destabilization of alpha cell character. These data indicate that insulin signaling constitutes a tunable mechanism for β cell compensatory plasticity during early development. Moreover, using a novel blastomere-to-larva transplantation strategy, we found that loss of insulin signaling in endoderm-committed blastomeres drove their differentiation into β cells. Furthermore, the extent of this differentiation was dependent on the function of the β cell mass in the host. Altogether, our results indicate that modulation of insulin signaling will be crucial for the development of β cell restoration therapies for diabetics; further clarification of the mechanisms of insulin signaling in β cell progenitors will reveal therapeutic targets for both in vivo and in vitro β cell generation.en_US
dc.eprint.versionAuthor's manuscripten_US
dc.identifier.citationYe, L., Robertson, M. A., Mastracci, T. L., & Anderson, R. M. (2016). An insulin signaling feedback loop regulates pancreas progenitor cell differentiation during islet development and regeneration. Developmental Biology, 409(2), 354–369. http://doi.org/10.1016/j.ydbio.2015.12.003en_US
dc.identifier.issn1095-564Xen_US
dc.identifier.urihttps://hdl.handle.net/1805/12444
dc.language.isoen_USen_US
dc.publisherElsevieren_US
dc.relation.isversionof10.1016/j.ydbio.2015.12.003en_US
dc.relation.journalDevelopmental Biologyen_US
dc.rightsPublisher Policyen_US
dc.sourcePMCen_US
dc.subjectCell Differentiationen_US
dc.subjectFeedback, Physiologicalen_US
dc.subjectInsulinen_US
dc.subjectmetabolismen_US
dc.subjectIslets of Langerhansen_US
dc.subjectembryologyen_US
dc.subjectRegenerationen_US
dc.subjectSignal Transductionen_US
dc.subjectStem Cellsen_US
dc.subjectcytologyen_US
dc.titleAn insulin signaling feedback loop regulates pancreas progenitor cell differentiation during islet development and regenerationen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
nihms771017.pdf
Size:
4.49 MB
Format:
Adobe Portable Document Format
Description:
Author's manuscript
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.88 KB
Format:
Item-specific license agreed upon to submission
Description: