Effects of electrical and optogenetic deep brain stimulation on synchronized oscillatory activity in Parkinsonian basal ganglia

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2016-04-08
Language
American English
Embargo Lift Date
Department
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Office of the Vice Chancellor for Research
Abstract

Objective. Deep brain stimulation (DBS) of basal ganglia targets with high-frequency regular electrical pulses is used to treat Parkinsonian motor symptoms. In spite of positive treatment effects, it has a series of limitations. In contrast, optogenetic stimulation, a new but fast growing area, is not yet at a point of clinical testing. Nevertheless, it emerges as an alternative experimental stimulation technique to affect pathological network dynamics, which may be responsible for motor symptoms. This paper compares the effects of electrical and optogenetic stimulation of the basal ganglia on the pathological parkinsonian rhythmic neural activity. Approach. We utilized a conductance-based model of the subthalamo-pallidal circuitry, which reproduces experimentally-observed patterns of neural activity in Parkinson’s disease, and consider the network response to electrical stimulation, excitatory optogenetic stimulation, and inhibitory optogenetic stimulation. Main Results. We found that different simulation types exhibit different interactions with pathological rhythmic activity in the network. We study these interactions for different network and stimulation parameter values. We show that, in the considered model, optogenetic stimulation may be more efficient in suppressing beta oscillations than electrical stimulation. Significance. These results indicate that optogenetic control may be more efficacious than electrical control of a network’s dynamics because of the different ways of how stimulations interact with network dynamics.

Description
poster abstract
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Shivakeshavan Ratnadurai-Giridharan, Chung C. Cheung, and Leonid L. Rubchinsky. 2016 April 8. Effects of electrical and optogenetic deep brain stimulation on synchronized oscillatory activity in Parkinsonian basal ganglia.Poster session presented at IUPUI Research Day 2016, Indianapolis, Indiana.
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Source
Alternative Title
Type
Poster
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}