Cohomology classes of conormal bundles of Schubert varieties and Yangian weight functions
Date
Language
Embargo Lift Date
Department
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Abstract
We consider the conormal bundle of a Schubert variety SI in the cotangent bundle T∗Gr of the Grassmannian Gr of k-planes in Cn. This conormal bundle has a fundamental class κI in the equivariant cohomology H∗T(T∗Gr). Here T=(C∗)n×C∗. The torus (C∗)n acts on T∗Gr in the standard way and the last factor C∗ acts by multiplication on fibers of the bundle. We express this fundamental class as a sum YI of the Yangian Y(gl2) weight functions (WJ)J. We describe a relation of YI with the double Schur polynomial [SI]. A modified version of the κI classes, named κ′I, satisfy an orthogonality relation with respect to an inner product induced by integration on the non-compact manifold T∗Gr. This orthogonality is analogous to the well known orthogonality satisfied by the classes of Schubert varieties with respect to integration on Gr. The classes (κ′I)I form a basis in the suitably localized equivariant cohomology H∗T(T∗Gr). This basis depends on the choice of the coordinate flag in Cn. We show that the bases corresponding to different coordinate flags are related by the Yangian R-matrix.