PI(3)P-independent and -dependent pathways function together in a vacuolar translocation sequence to target malarial proteins to the host erythrocyte

Date
2012
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Elsevier
Can't use the file because of accessibility barriers? Contact us with the title of the item, permanent link, and specifics of your accommodation need.
Abstract

Malaria parasites export ‘a secretome’ of hundreds of proteins, including major virulence determinants, from their endoplasmic reticulum (ER), past the parasite plasma and vacuolar membranes to the host erythrocyte. The export mechanism is high affinity (nanomolar) binding of a host (cell) targeting (HT) motif RxLxE/D/Q to the lipid phosphatidylinositol 3-phosphate (PI(3)P) in the ER. Cleavage of the HT motif releases the secretory protein from the ER membrane. The HT motif is thought to be the only export signal resident in an N-terminal vacuolar translocation sequence (VTS) that quantitatively targets green fluorescent protein to the erythrocyte. We have previously shown that the R to A mutation in the HT motif, abrogates VTS binding to PI(3)P (Kd > 5 μM). We now show that remarkably, the R to A mutant is exported to the host erythrocyte, for both membrane and soluble reporters, although the efficiency of export is reduced to ~ 30% of that seen with a complete VTS. Mass spectrometry indicates that the R to A mutant is cleaved at sites upstream of the HT motif. Antibodies to upstream sequences confirm that aberrantly cleaved R to A protein mutant is exported to the erythrocyte. These data suggest that export mechanisms, independent of PI(3)P as well as those dependent on PI(3)P, function together in a VTS to target parasite proteins to the host erythrocyte.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Bhattacharjee S, Speicher KD, Stahelin RV, Speicher DW, Haldar K. PI(3)P-independent and -dependent pathways function together in a vacuolar translocation sequence to target malarial proteins to the host erythrocyte. Mol Biochem Parasitol. 2012;185(2):106-113. doi:10.1016/j.molbiopara.2012.07.004
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Molecular and Biochemical Parasitology
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Author's manuscript
Full Text Available at
This item is under embargo {{howLong}}