Endoplasmic reticulum stress alters ryanodine receptor function in the murine pancreatic β cell

dc.contributor.authorYamamoto, Wataru R.
dc.contributor.authorBone, Robert N.
dc.contributor.authorSohn, Paul
dc.contributor.authorSyed, Farooq
dc.contributor.authorReissaus, Christopher A.
dc.contributor.authorMosley, Amber L.
dc.contributor.authorWijeratne, Aruna B.
dc.contributor.authorTrue, Jason D.
dc.contributor.authorTong, Xin
dc.contributor.authorKono, Kono
dc.contributor.authorEvans-Molina, Carmella
dc.contributor.departmentBiochemistry and Molecular Biology, School of Medicineen_US
dc.date.accessioned2020-03-03T16:22:21Z
dc.date.available2020-03-03T16:22:21Z
dc.date.issued2018-11-12
dc.description.abstractAlterations in endoplasmic reticulum (ER) calcium (Ca2+) levels diminish insulin secretion and reduce β-cell survival in both major forms of diabetes. The mechanisms responsible for ER Ca2+ loss in β cells remain incompletely understood. Moreover, a specific role for either ryanodine receptor (RyR) or inositol 1,4,5-triphosphate receptor (IP3R) dysfunction in the pathophysiology of diabetes remains largely untested. To this end, here we applied intracellular and ER Ca2+ imaging techniques in INS-1 β cells and isolated islets to determine whether diabetogenic stressors alter RyR or IP3R function. Our results revealed that the RyR is sensitive mainly to ER stress–induced dysfunction, whereas cytokine stress specifically alters IP3R activity. Consistent with this observation, pharmacological inhibition of the RyR with ryanodine and inhibition of the IP3R with xestospongin C prevented ER Ca2+ loss under ER and cytokine stress conditions, respectively. However, RyR blockade distinctly prevented β-cell death, propagation of the unfolded protein response (UPR), and dysfunctional glucose-induced Ca2+ oscillations in tunicamycin-treated INS-1 β cells and mouse islets and Akita islets. Monitoring at the single-cell level revealed that ER stress acutely increases the frequency of intracellular Ca2+ transients that depend on both ER Ca2+ leakage from the RyR and plasma membrane depolarization. Collectively, these findings indicate that RyR dysfunction shapes ER Ca2+ dynamics in β cells and regulates both UPR activation and cell death, suggesting that RyR-mediated loss of ER Ca2+ may be an early pathogenic event in diabetes.en_US
dc.identifier.citationYamamoto, W. R., Bone, R. N., Sohn, P., Syed, F., Reissaus, C. A., Mosley, A. L., ... & Evans-Molina, C. (2019). Endoplasmic reticulum stress alters ryanodine receptor function in the murine pancreatic β cell. Journal of Biological Chemistry, 294(1), 168-181. 10.1074/jbc.RA118.005683en_US
dc.identifier.issn0021-9258, 1083-351Xen_US
dc.identifier.urihttps://hdl.handle.net/1805/22237
dc.language.isoen_USen_US
dc.publisherAmerican Society for Biochemistry and Molecular Biologyen_US
dc.relation.isversionof10.1074/jbc.RA118.005683en_US
dc.relation.journalJournal of Biological Chemistryen_US
dc.sourcePMCen_US
dc.subjectBeta cell (B-cell)en_US
dc.subjectCalcium signalingen_US
dc.subjectDiabetesen_US
dc.subjectEndoplasmic reticulum calciumen_US
dc.subjectEndoplasmic reticulum stress (ER stress)en_US
dc.subjectGlucose-induced calcium oscillationsen_US
dc.subjectInositol 1,4,5-triphosphate (IP3) receptoren_US
dc.subjectInositol trisphosphate receptor (InsP3R)en_US
dc.subjectRyanodine receptoren_US
dc.subjectUnfolded protein responseen_US
dc.titleEndoplasmic reticulum stress alters ryanodine receptor function in the murine pancreatic β cellen_US
dc.typeArticleen_US
ul.alternative.fulltexthttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6322901/en_US
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
zbc168.pdf
Size:
3.6 MB
Format:
Adobe Portable Document Format
Description:
Main article
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: