Development and validation of a paper spray mass spectrometry method for the rapid quantitation of remdesivir and its active metabolite, GS-441524, in human plasma
Date
Language
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Abstract
Introduction Remdesivir (GS-5734) is a nucleoside analog prodrug with antiviral activity against several single-stranded RNA viruses, including the novel severe respiratory distress syndrome virus 2 (SARS-CoV-2). It is currently the only FDA-approved antiviral agent for the treatment of individuals with COVID-19 caused by SARS-CoV-2. However, remdesivir pharmacokinetics/pharmacodynamics (PK/PD) and toxicity data in humans are extremely limited. It is imperative that precise analytical methods for the quantification of remdesivir and its active metabolite, GS-441524, are developed for use in further studies. We report, herein, the first validated anti-viral paper spray-mass spectrometry (PS-MS/MS) assay for the quantification of remdesivir and GS-441524 in human plasma. We seek to highlight the utility of PS-MS/MS technology and automation advancements for its potential future use in clinical research and the clinical laboratory setting.
Methods Calibration curves for remdesivir and GS-441524 were created utilizing seven plasma-based calibrants of varying concentrations and two isotopic internal standards of set concentrations. Four plasma-based quality controls were prepared in a similar fashion to the calibrants and utilized for validation. No sample preparation was needed. Briefly, plasma samples were spotted on a paper substrate contained within pre-manufactured plastic cassette plates, and the spots were dried for 1 h. The samples were then analyzed directly for 1.2 min utilizing PS-MS/MS. All experiments were performed on a Thermo Scientific Altis triple quadrupole mass spectrometer utilizing automated technology.
Results The calibration ranges were 20 – 5000 and 100 – 25000 ng/mL for remdesivir and GS-441524, respectively. The calibration curves for the two antiviral agents showed excellent linearity (average R2 = 0.99–1.00). The inter- and intra-day precision (%CV) across validation runs at four QC levels for both analytes was less than 11.2% and accuracy (%bias) was within ± 15%. Plasma calibrant stability was assessed and degradation for the 4 °C and room temperature samples were seen beginning at Day 7. The plasma calibrants were stable at −20 °C. No interference, matrix effects, or carryover was discovered during the validation process.
Conclusions PS-MS/MS represents a useful methodology for rapidly quantifying remdesivir and GS-441524, which may be useful for clinical PK/PD, therapeutic drug monitoring (TDM), and toxicity assessment, particularly during the current COVID-19 pandemic and future viral outbreaks.