Economic Operation of Utility-Connected Microgrids in a Fast and Flexible Framework Considering Non-Dispatchable Energy Sources

Date
2022
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
MDPI
Abstract

This paper introduces a modified consensus-based real-time optimization framework for utility-connected and islanded microgrids scheduling in normal conditions and under cyberattacks. The exchange of power with the utility is modeled, and the operation of the microgrid energy resources is optimized to minimize the total energy cost. This framework tracks both generation and load variations to decide optimal power generations and the exchange of power with the utility. A linear cost function is defined for the utility where the rates are updated at every time interval. In addition, a realistic approach is taken to limit the power generation from renewable energy sources, including photovoltaics (PVs), wind turbines (WTs), and dispatchable distributed generators (DDGs). The maximum output power of DDGs is limited to their ramp rates. Besides this, a specific cloud-fog architecture is suggested to make the real-time operation and monitoring of the proposed method feasible for utility-connected and islanded microgrids. The cloud-fog-based framework is flexible in applying demand response (DR) programs for more efficiency of the power operation. The algorithm’s performance is examined on the 14 bus IEEE network and is compared with optimal results. Three operating scenarios are considered to model the load as light and heavy, and after denial of service (DoS) attack to indicate the algorithm’s feasibility, robustness, and proficiency. In addition, the uncertainty of the system is analyzed using the unscented transformation (UT) method. The simulation results demonstrate a robust, rapid converging rate and the capability to track the load variations due to the probable responsive loads (considering DR programs) or natural alters of load demand.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Akbari R, Tajalli SZ, Kavousi-Fard A, Izadian A. Economic Operation of Utility-Connected Microgrids in a Fast and Flexible Framework Considering Non-Dispatchable Energy Sources. Energies. 2022;15(8):2894. doi:10.3390/en15082894
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Energies
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
Full Text Available at
This item is under embargo {{howLong}}