Radioluminescent nanoparticles for radiation-controlled release of drugs

dc.contributor.authorMisra, Rahul
dc.contributor.authorSarkar, Kaustabh
dc.contributor.authorLee, Jaewon
dc.contributor.authorPizzuti, Vincenzo J.
dc.contributor.authorLee, Deborah S.
dc.contributor.authorCurrie, Melanie P.
dc.contributor.authorTorregrosa-Allen, Sandra E.
dc.contributor.authorLong, David E.
dc.contributor.authorDurm, Gregory A.
dc.contributor.authorLanger, Mark P.
dc.contributor.authorElzey, Bennett D.
dc.contributor.authorWon, You-Yeon
dc.contributor.departmentRadiation Oncology, School of Medicineen_US
dc.date.accessioned2019-05-16T19:15:39Z
dc.date.available2019-05-16T19:15:39Z
dc.date.issued2019-06
dc.description.abstractThe present work demonstrates a novel concept for intratumoral chemo-radio combination therapy for locally advanced solid tumors. For some locally advanced tumors, chemoradiation is currently standard of care. This combination treatment can cause acute and long term toxicity that can limit its use in older patients or those with multiple medical comorbidities. Intratumoral chemotherapy has the potential to address the problem of systemic toxicity that conventional chemotherapy suffers, and may, in our view, be a better strategy for treating certain locally advanced tumors. The present study proposes how intratumoral chemoradiation can be best implemented. The enabling concept is the use of a new chemotherapeutic formulation in which chemotherapy drugs (e.g., paclitaxel (PTX)) are co-encapsulated with radioluminecsnt nanoparticles (e.g., CaWO4 (CWO) nanoparticles (NPs)) within protective capsules formed by biocompatible/biodegradable polymers (e.g., poly(ethylene glycol)-poly(lactic acid) or PEG-PLA). This drug-loaded polymer-encapsulated radioluminescent nanoparticle system can be locally injected in solution form into the patient's tumor before the patient receives normal radiotherapy (e.g., 30–40 fractions of 2–3 Gy daily X-ray dose delivered over several weeks for locally advanced head and neck tumors). Under X-ray irradiation, the radioluminescent nanoparticles produce UV-A light that has a radio-sensitizing effect. These co-encapsulated radioluminescent nanoparticles also enable radiation-triggered release of chemo drugs from the polymer coating layer. The non-toxic nature (absence of dark toxicity) of this drug-loaded polymer-encapsulated radioluminescent nanoparticle (“PEG-PLA/CWO/PTX”) formulation was confirmed by the MTT assay in cancer cell cultures. A clonogenic cell survival assay confirmed that these drug-loaded polymer-encapsulated radioluminescent nanoparticles significantly enhance the cancer cell killing effect of radiation therapy. In vivo study validated the efficacy of PEG-PLA/CWO/PTX-based intratumoral chemo-radio therapy in mouse tumor xenografts (in terms of tumor response and mouse survival). Results of a small-scale NP biodistribution (BD) study demonstrate that PEG-PLA/CWO/PTX NPs remained at the tumor sites for a long period of time (> 1 month) following direct intratumoral administration. A multi-compartmental pharmacokinetic model (with rate constants estimated from in vitro experiments) predicts that this radiation-controlled drug release technology enables significant improvements in the level and duration of drug availability within the tumor (throughout the typical length of radiation treatment, i.e., > 1 month) over conventional delivery systems (e.g., PEG-PLA micelles with no co-encapsulated CaWO4, or an organic liquid, e.g., a 50:50 mixture of Cremophor EL and ethanol, as in Taxol), while it is capable of maintaining the systemic level of the chemo drug far below the toxic threshold limit over the entire treatment period. This technology thus has the potential to offer a new therapeutic option that has not previously been available for patients excluded from conventional chemoradiation protocols.en_US
dc.eprint.versionAuthor's manuscripten_US
dc.identifier.citationMisra, R., Sarkar, K., Lee, J., Pizzuti, V. J., Lee, D. S., Currie, M. P., … Won, Y.-Y. (2019). Radioluminescent nanoparticles for radiation-controlled release of drugs. Journal of Controlled Release, 303, pp. 237-252. https://doi.org/10.1016/j.jconrel.2019.04.033en_US
dc.identifier.urihttps://hdl.handle.net/1805/19344
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.isversionof10.1016/j.jconrel.2019.04.033en_US
dc.relation.journalJournal of Controlled Releaseen_US
dc.rightsPublisher Policyen_US
dc.sourceAuthoren_US
dc.subjectradioluminescent nanoparticlesen_US
dc.subjectradiotherapyen_US
dc.subjectchemotherapyen_US
dc.titleRadioluminescent nanoparticles for radiation-controlled release of drugsen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Misra_2019_radioluminescent.pdf
Size:
1.48 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: