Deep learning-driven adaptive optics for single-molecule localization microscopy

dc.contributor.authorZhang, Peiyi
dc.contributor.authorMa, Donghan
dc.contributor.authorCheng, Xi
dc.contributor.authorTsai, Andy P.
dc.contributor.authorTang, Yu
dc.contributor.authorGao, Hao-Cheng
dc.contributor.authorFang, Li
dc.contributor.authorBi, Cheng
dc.contributor.authorLandreth, Gary E.
dc.contributor.authorChubykin, Alexander A.
dc.contributor.authorHuang, Fang
dc.contributor.departmentAnatomy, Cell Biology and Physiology, School of Medicine
dc.date.accessioned2024-04-16T15:12:36Z
dc.date.available2024-04-16T15:12:36Z
dc.date.issued2023
dc.description.abstractThe inhomogeneous refractive indices of biological tissues blur and distort single-molecule emission patterns generating image artifacts and decreasing the achievable resolution of single-molecule localization microscopy (SMLM). Conventional sensorless adaptive optics methods rely on iterative mirror changes and image-quality metrics. However, these metrics result in inconsistent metric responses and thus fundamentally limit their efficacy for aberration correction in tissues. To bypass iterative trial-then-evaluate processes, we developed deep learning-driven adaptive optics for SMLM to allow direct inference of wavefront distortion and near real-time compensation. Our trained deep neural network monitors the individual emission patterns from single-molecule experiments, infers their shared wavefront distortion, feeds the estimates through a dynamic filter and drives a deformable mirror to compensate sample-induced aberrations. We demonstrated that our method simultaneously estimates and compensates 28 wavefront deformation shapes and improves the resolution and fidelity of three-dimensional SMLM through >130-µm-thick brain tissue specimens.
dc.eprint.versionFinal published version
dc.identifier.citationZhang P, Ma D, Cheng X, et al. Deep learning-driven adaptive optics for single-molecule localization microscopy. Nat Methods. 2023;20(11):1748-1758. doi:10.1038/s41592-023-02029-0
dc.identifier.urihttps://hdl.handle.net/1805/40054
dc.language.isoen_US
dc.publisherSpringer Nature
dc.relation.isversionof10.1038/s41592-023-02029-0
dc.relation.journalNature Methods
dc.rightsAttribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourcePMC
dc.subjectSuper-resolution microscopy
dc.subjectFluorescence imaging
dc.subjectDeep learning
dc.subjectMicroscopy
dc.titleDeep learning-driven adaptive optics for single-molecule localization microscopy
dc.typeArticle
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
41592_2023_Article_2029.pdf
Size:
17.51 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: