Synthetic foundations of cevian geometry, III: the generalized orthocenter
Date
Language
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Abstract
In this paper, the third in the series, we study the properties of the generalized orthocenter H corresponding to a point P, defined to be the unique point for which the lines HA, HB, HC are parallel, respectively, to QD, QE, QF, where DEF is the cevian triangle of P and Q=K∘ι(P)Q=K∘ι(P) is the isotomcomplement of P, both with respect to a given triangle ABC. We characterize the center Z of the cevian conic CPCP on the 5 points ABCPQ as the center of the affine map ΦP=TP∘K−1∘TP′∘K−1ΦP=TP∘K−1∘TP′∘K−1, where TP is the unique affine map for which TP(ABC) = DEF; TP' is defined similarly for the isotomic conjugate P′=ι(P)P′=ι(P) of P; and K is the complement map. The point Z is the point where the nine-point conic NHNH for the quadrangle ABCH and the inconic II of ABC, tangent to the sides at D, E, F, touch. This theorem generalizes the classical Feuerbach theorem.