A semi-empirical model for the therapeutic range shift estimation caused by inhomogeneities in proton beam therapy

dc.contributor.authorMoskvin, Vadim
dc.contributor.authorCheng, Chee-Wai
dc.contributor.authorFanelli, Leia
dc.contributor.authorZhao, Li
dc.contributor.authorDas, Indra J.
dc.contributor.departmentRadiation Oncology, School of Medicineen_US
dc.date.accessioned2018-08-09T21:16:14Z
dc.date.available2018-08-09T21:16:14Z
dc.date.issued2012-03-08
dc.description.abstractThe purpose of this study was to devise a simple semi-empirical model to estimate the range shift in clinical practices with high-Z inhomogeneity in proton beam. A semi-empirical model utilizing the logarithmic dependence on Z in stopping power from Bohr's classical approach has been developed to calculate the range shift due to the presence of inhomogeneity. Range shift from metallic plates of atomic number Z of various thicknesses were measured in water using a parallel plate ionization chamber and calculated with the FLUKA Monte Carlo code. The proton range shifts for bone and polymethyl methacrylate (PMMA) were estimated using the semi-empirical model and compared with Monte Carlo calculation. The semi-empirical equation to determine range shift and water equivalent thickness is presented. The model predicts a shift of the therapeutic range to within 2.5% accuracy for initial proton energies of 50 to 250 MeV and atomic numbers from 3.3 (effective Z for water) to 82. This equation is independent of beam energy, and thus provides range shift from high-Z materials without the knowledge of proton energy. The proposed method of calculating the therapeutic range shift accurately requires only knowledge of the effective or actual atomic number of the inhomogeneity and the thickness of the inhomogeneity along the beam direction. The model generalizes the range shift calculation for any material based on its effective atomic number, and permits reliable prediction of the range shift for material combinations where no data is currently available. The proposed model can be readily implemented in routine clinical practice for proton range shift estimation and quality assurance on the treatment planning.en_US
dc.eprint.versionFinal published versionen_US
dc.identifier.citationMoskvin, V., Cheng, C., Fanelli, L., Zhao, L., & Das, I. J. (2012). A semi‐empirical model for the therapeutic range shift estimation caused by inhomogeneities in proton beam therapy. Journal of Applied Clinical Medical Physics, 13(2), 3–12. http://doi.org/10.1120/jacmp.v13i2.3631en_US
dc.identifier.urihttps://hdl.handle.net/1805/17077
dc.language.isoen_USen_US
dc.publisherAmerican Association of Physicists in Medicineen_US
dc.relation.isversionof10.1120/jacmp.v13i2.3631en_US
dc.relation.journalJournal of Applied Clinical Medical Physicsen_US
dc.rightsAttribution 3.0 United States
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/
dc.sourcePMCen_US
dc.subjectProton beamen_US
dc.subjectRange shiften_US
dc.subjectHigh‐Zen_US
dc.subjectSemi‐empirical modelingen_US
dc.subjectWater‐equivalent thicknessen_US
dc.titleA semi-empirical model for the therapeutic range shift estimation caused by inhomogeneities in proton beam therapyen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ACM2-13-003.pdf
Size:
1.01 MB
Format:
Adobe Portable Document Format
Description:
Main article
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: