Ketoconazole Resistant Candida albicans is Sensitive to a Wireless Electroceutical Wound Care Dressing

Date
2021
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Elsevier
Abstract

Wireless electroceutical dressing (WED) fabric kills bacteria and disrupts bacterial biofilm. This work tested, comparing with standard of care topical antibiotic ketoconazole, whether the weak electric field generated by WED is effective to manage infection caused by ketoconazole-resistant yeast Candida albicans. WED inhibited Candida albicans biofilm formation and planktonic growth. Unlike ketoconazole, WED inhibited yeast to hyphal transition and downregulated EAP1 curbing cell attachment. In response to WED-dependent down-regulation of biofilm-forming BRG1 and ROB1, BCR1 expression was markedly induced in what seems to be a futile compensatory response. WED induced NRG1 and TUP1, negative regulators of filamentation; it down-regulated EFG1, a positive regulator of hyphal pathway. Consistent with the anti-hyphal properties of WED, the expression of ALS3 and HWP1 were diminished. Ketoconazole failed to reproduce the effects of WED on NRG1, TUP1 and EFG1. WED blunted efflux pump activity; this effect was in direct contrast to that of ketoconazole. WED exposure compromised cellular metabolism. In the presence of ketoconazole, the effect was synergistic. Unlike ketoconazole, WED caused membrane depolarization, changes in cell wall composition and loss of membrane integrity. This work presents first evidence that weak electric field is useful in managing pathogens which are otherwise known to be antibiotic resistant.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Khona DK, Roy S, Ghatak S, et al. Ketoconazole resistant Candida albicans is sensitive to a wireless electroceutical wound care dressing. Bioelectrochemistry. 2021;142:107921. doi:10.1016/j.bioelechem.2021.107921
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Bioelectrochemistry
Rights
Publisher Policy
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Author's manuscript
Full Text Available at
This item is under embargo {{howLong}}