Einstein Finsler Metrics and Killing Vector Fields on Riemannian Manifolds

dc.contributor.authorCheng, Xinyue
dc.contributor.authorShen, Zhongmin
dc.contributor.departmentDepartment of Mathematical Sciences, School of Scienceen_US
dc.date.accessioned2017-06-07T17:19:12Z
dc.date.available2017-06-07T17:19:12Z
dc.date.issued2017-01
dc.description.abstractWe use a Killing form on a Riemannian manifold to construct a class of Finsler metrics. We find equations that characterize Einstein metrics among this class. In particular, we construct a family of Einstein metrics on S3 with Ric = 2F2, Ric = 0 and Ric = -2F2, respectively. This family of metrics provides an important class of Finsler metrics in dimension three, whose Ricci curvature is a constant, but the flag curvature is not.en_US
dc.eprint.versionAuthor's manuscripten_US
dc.identifier.citationCheng, X., & Shen, Z. (2017). Einstein Finsler metrics and killing vector fields on Riemannian manifolds. Science China Mathematics, 60(1), 83-98. doi:10.1007/s11425-016-0303-6en_US
dc.identifier.urihttps://hdl.handle.net/1805/12892
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.isversionof10.1007/s11425-016-0303-6en_US
dc.relation.journalScience China Mathematicsen_US
dc.rightsPublisher Policyen_US
dc.sourceArXiven_US
dc.subjectKilling vector fielden_US
dc.subjectFinsler metricen_US
dc.subject(a, ß)-metricen_US
dc.titleEinstein Finsler Metrics and Killing Vector Fields on Riemannian Manifoldsen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Cheng_2016_Einstein.pdf
Size:
184.5 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.88 KB
Format:
Item-specific license agreed upon to submission
Description: