Integrating deep learning and machine learning for improved CKD-related cortical bone assessment in HRpQCT images: A pilot study

Date
2024-12-26
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Elsevier
Can't use the file because of accessibility barriers? Contact us with the title of the item, permanent link, and specifics of your accommodation need.
Abstract

High resolution peripheral quantitative computed tomography (HRpQCT) offers detailed bone geometry and microarchitecture assessment, including cortical porosity, but assessing chronic kidney disease (CKD) bone images remains challenging. This proof-of-concept study merges deep learning and machine learning to 1) improve automatic segmentation, particularly in cases with severe cortical porosity and trabeculated endosteal surfaces, and 2) maximize image information using machine learning feature extraction to classify CKD-related skeletal abnormalities, surpassing conventional DXA and CT measures. We included 30 individuals (20 non-CKD, 10 stage 3 to 5D CKD) who underwent HRpQCT of the distal and diaphyseal radius and tibia and contributed data to develop and validate four different AI models for each anatomical site. Manually annotated cortical bone was used to train each segmentation deep-learning model. Textural features were extracted via Gray-Level Co-occurrence Matrix (GLCM) and classified as CKD or non-CKD using XGBoost with each segmentation model. For comparison, manufacturer-supplied segmentation was used to extract cortical geometry, microarchitecture, and finite element analysis (FEA) outcomes. Model performance was confirmed using the test dataset and a separate independent validation cohort which included HRpQCT imaging from 42 additional individuals (18 non-CKD, 24 CKD stage 5D). For segmentation, the diaphyseal location showed strong performance on test datasets, with Mean IoUs of 0.96 and 0.95, and accuracies of 0.97 for both radius and tibia sites in CKD. Model 4 developed from the diaphyseal tibia region excelled in classifying test and independent validation datasets, achieving F1 scores of 0.99 and 0.96, AUCs of 0.99 and 0.94, sensitivities of 0.99, and specificities of 0.99 and 0.92. No single parameter, including BMD and cortical porosity, among conventional CT outcomes consistently differentiated CKD from non-CKD across all anatomical sites. Integrating HRpQCT with deep and machine learning, this innovative approach enables precise automatic segmentation of severely deteriorated endocortical surfaces and enhances sensitivity to CKD-related cortical bone changes compared to standard DXA and HRpQCT outcomes.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Lee Y, Bandara WR, Park S, et al. Integrating deep learning and machine learning for improved CKD-related cortical bone assessment in HRpQCT images: A pilot study. Bone Rep. 2024;24:101821. Published 2024 Dec 26. doi:10.1016/j.bonr.2024.101821
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Bone Reports
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
Full Text Available at
This item is under embargo {{howLong}}