A Role for SSRP1 in Recombination-Mediated DNA Damage Response

Date
2009-10
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Wiley
Abstract

A possible role for structure-specific recognition protein 1 (SSRP1) in replication-associated repair processes has previously been suggested based on its interaction with several DNA repair factors and the replication defects observed in SSRP1 mutants. In this study, we investigated the potential role of SSRP1 in association with DNA repair mediated by homologous recombination (HR), one of the pathways involved in repairing replication-associated DNA damage, in mammalian cells. Surprisingly, over-expression of SSRP1 reduced the number of hprt(+) recombinants generated via HR both spontaneously and upon hydroxyurea (HU) treatment, whereas knockdown of SSRP1 resulted in an increase of HR events in response to DNA double-strand break formation. In correlation, we found that the depletion of SSRP1 in HU-treated human cells elevated the number of Rad51 and H2AX foci, while over-expression of the wild-type SSRP1 markedly reduced HU-induced Rad51 foci formation. We also found that SSRP1 physically interacts with a key HR repair protein, Rad54 both in vitro and in vivo. Further, branch migration studies demonstrated that SSRP1 inhibits Rad54-promoted branch migration of Holliday junctions in vitro. Taken together, our data suggest a functional role for SSRP1 in spontaneous and replication-associated DNA damage response by suppressing avoidable HR repair events.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Kumari A, Mazina OM, Shinde U, Mazin AV, Lu H. A role for SSRP1 in recombination-mediated DNA damage response. J Cell Biochem. 2009;108(2):508-518. doi:10.1002/jcb.22280
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Journal of Cellular Biochemistry
Rights
Publisher Policy
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Author's manuscript
Full Text Available at
This item is under embargo {{howLong}}