Cdk4/6 Inhibition Induces Epithelial-Mesenchymal Transition and Enhances Invasiveness in Pancreatic Cancer Cells

Date
2012
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
American Association for Cancer Research
Can't use the file because of accessibility barriers? Contact us with the title of the item, permanent link, and specifics of your accommodation need.
Abstract

Aberrant activation of Cyclin D-Cdk4/6 signaling pathway is commonly found in pancreatic ductal adenocarcinoma (PDAC). Here, we show that PD-0332991, a highly specific inhibitor for Cdk4 and Cdk6, exerted growth inhibitory effects on three human PDAC cell lines. Microarray analysis revealed that PD-0332991 downregulated cell-cycle-related genes, but upregulated genes implicated in extracellular matrix (ECM) remodeling and pancreatic cancer cell invasion and metastasis. Moreover, PD-0332991 enhanced invasion in TGF-β-responsive PDAC cell lines that harbor a wild-type SMAD4 gene (COLO-357, PANC-1), but not in TGF-β-resistant AsPC-1 cells that harbor a mutated SMAD4. PD-0332991 also induced epithelial-mesenchymal transition (EMT) in COLO-357 and PANC-1, but not in AsPC-1 cells. Inhibition of CDK4/6 using shRNA mimicked the effects of PD-0332991 on EMT induction. Furthermore, PD-0332991 increased Smad transcriptional activity in luciferase readout assays and activated TGF-β signaling. SB-505124, an inhibitor of the type-I TGF-β receptor (TβRI) kinase, completely blocked EMT induction by PD-0332991. When combined with PD-0332991, SB-505124 inhibited the growth of COLO-357 and PANC-1 cells. Taken together, these data suggest that anti-Cdk4/6 therapy could induce EMT and enhance pancreatic cancer cell invasion by activating Smad-dependent TGF-β signaling, and that combining PD-0332991 and SB-505124 may represent a novel therapeutic strategy in PDAC.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Liu F, Korc M. Cdk4/6 inhibition induces epithelial-mesenchymal transition and enhances invasiveness in pancreatic cancer cells. Mol Cancer Ther. 2012;11(10):2138-2148. doi:10.1158/1535-7163.MCT-12-0562
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Molecular Cancer Therapeutics
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Author's manuscript
Full Text Available at
This item is under embargo {{howLong}}