Creating a capture zone in microfluidic flow greatly enhances the throughput and efficiency of cancer detection

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2019-03
Language
English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Elsevier
Abstract

Efficient capture of rare circulating tumor cells (CTCs) from blood samples is valuable for early cancer detection to improve the management of cancer. In this work, we developed a highly efficient microfluidics-based method for detecting CTCs in human blood. This is achieved by creating separate capture and flow zones in the microfluidic device (ZonesChip) and using patterned dielectrophoretic force to direct cells from the flow zone into the capture zone. This separation of the capture and flow zones minimizes the negative impact of high flow speed (and thus high throughput) and force in the flow zone on the capture efficiency, overcoming a major bottleneck of contemporary microfluidic approaches using overlapping flow and capture zones for CTC detection. When the flow speed is high (≥0.58 mm/s) in the flow zone, the separation of capture and flow zones in our ZonesChip could improve the capture efficiency from ∼0% (for conventional device without separating the two zones) to ∼100%. Our ZonesChip shows great promise as an effective platform for the detection of CTCs in blood from patients with early/localized-stage colorectal tumors.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Sun, M., Xu, J., Shamul, J. G., Lu, X., Husain, S., & He, X. (2019). Creating a capture zone in microfluidic flow greatly enhances the throughput and efficiency of cancer detection. Biomaterials, 197, pp 161-170. https://doi.org/10.1016/j.biomaterials.2019.01.014
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Biomaterials
Source
Author
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Author's manuscript
Full Text Available at
This item is under embargo {{howLong}}