Floquet exceptional contours in Lindblad dynamics with time-periodic drive and dissipation
Date
Language
Embargo Lift Date
Department
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Abstract
The dynamics of an isolated quantum system is coherent and unitary. Weak coupling to the environment leads to decoherence, which is traditionally modeled with a Lindblad equation for the system's density matrix. Starting from a pure state, such a system approaches a steady state (mixed or otherwise) in an underdamped or overdamped manner. This transition occurs at an eigenvalue degeneracy of a Lindblad superoperator, called an exceptional point (EP), where corresponding eigenvectors coalesce. Recent years have seen an explosion of interest in creating exceptional points in a truly quantum domain, driven by the enhanced sensitivity and topological features EPs have shown in their classical realizations. Here, we present Floquet analysis of a prototypical qubit whose drive or dissipator strengths are varied periodically. We consider models with a single dissipator that generate global loss (phase damping) or mode-selective loss (spontaneous emission). In all cases, we find that periodic modulations lead to EP lines at small dissipator strengths and a rich EP structure in the parameter space. Our analytical and numerical results show that extending Lindblad Liouvillians to the Floquet domain is a potentially preferred route to accessing exceptional points in the transient dynamics towards the Lindblad steady state.