Mechanistic Studies of the Spore Photoproduct Lyase (SPL) via a Single Cysteine Mutation

Date
2012
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
ACS
Can't use the file because of accessibility barriers? Contact us with the title of the item, permanent link, and specifics of your accommodation need.
Abstract

5-Thyminyl-5,6-dihydrothymine (also called spore photoproduct or SP) is the exclusive DNA photodamage product in bacterial endospores. It is repaired by a radical SAM (S-adenosylmethionine) enzyme, the spore photoproduct lyase (SPL), at the bacterial early germination phase. Our previous studies proved that SPL utilizes the 5'-dA• generated by the SAM cleavage reaction to abstract the H(6proR) atom to initiate the SP repair process. The resulting thymine allylic radical was suggested to take an H atom from an unknown protein source, most likely cysteine 141. Here we show that C141 can be readily alkylated in the native SPL by an iodoacetamide treatment, suggesting that it is accessible to the TpT radical. SP repair by the SPL C141A mutant yields TpTSO(2)(-) and TpT simultaneously from the very beginning of the reaction; no lag phase is observed for TpTSO(2)(-) formation. Should any other protein residue serve as the H donor, its presence would result in TpT being the major product at least for the first enzyme turnover. These observations provide strong evidence to support C141 as the direct H atom donor. Moreover, because of the lack of this intrinsic H donor, the C141A mutant produces TpT via an unprecedented thymine cation radical reduction (proton-coupled electron transfer) process, contrasting to the H atom transfer mechanism in the wild-type (WT) SPL reaction. The C141A mutant repairs SP at a rate that is ~3-fold slower than that of the WT enzyme. Formation of TpTSO(2)(-) and TpT exhibits a V(max) deuterium kinetic isotope effect (KIE) of 1.7 ± 0.2, which is smaller than the (D)V(max) KIE of 2.8 ± 0.3 determined for the WT SPL reaction. These findings suggest that removing the intrinsic H atom donor disturbs the rate-limiting process during enzyme catalysis. As expected, the prereduced C141A mutant supports only ~0.4 turnover, which is in sharp contrast to the >5 turnovers exhibited by the WT SPL reaction, suggesting that the enzyme catalytic cycle (SAM regeneration) is disrupted by this single mutation.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Yang L, Lin G, Nelson RS, Jian Y, Telser J, Li L. Mechanistic studies of the spore photoproduct lyase via a single cysteine mutation [published correction appears in Biochemistry. 2012 Dec 11;51(49):9940. doi: 10.1021/bi301546f.]. Biochemistry. 2012;51(36):7173-7188. doi:10.1021/bi3010945
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Biochemistry
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Author's manuscript
Full Text Available at
This item is under embargo {{howLong}}