Accuracy of Daily Fluid Intake Measurements Using a "Smart" Water Bottle

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2017
Language
English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Springer
Abstract

High fluid intake is an effective preventative strategy against recurrent kidney stones but is known to be challenging to achieve. Recently, a smart water bottle (Hidrate Spark™, Minneapolis, MN) was developed as a non-invasive fluid intake monitoring system. This device could help patients who form stones from low urine volume achieve sustainable improvements in hydration, but has yet to be validated in a clinical setting. Hidrate Spark™ uses capacitive touch sensing via an internal sensor. It calculates volume measurements by detecting changes in water level and sends data wirelessly to users’ smartphones through an application. A pilot study was conducted to assess accuracy of measured fluid intake over 24 h periods when used in a real life setting. Subjects were provided smart bottles and given short tutorials on their use. Accuracy was determined by comparing 24-h fluid intake measurements calculated through the smart bottle via sensor to standard volume measurements calculated by the patient from hand over the same 24 h period. Eight subjects performed sixty-two 24-h measurements (range 4–14). Mean hand measurement was 57.2 oz/1692 mL (21–96 oz/621–2839 mL). Corresponding mean smart bottle measurement underestimated true fluid intake by 0.5 ozs. (95% CI −1.9, 0.9). Percent difference between hand and smart bottle measurements was 0.0% (95% CI − 3%, 3%). Intraclass correlation coefficient (ICC), calculated to assess consistency between hand measures and bottle measures, was 0.97 (0.95, 0.98) indicating an extremely high consistency between measures. 24-h fluid intake measurements from a novel fluid monitoring system (Hidrate Spark™) are accurate to within 3%. Such technology may be useful as a behavioral aide and/or research tool particularly among recurrent stone formers with low urinary volume.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Borofsky, M. S., Dauw, C. A., York, N., Terry, C., & Lingeman, J. E. (2017). Accuracy of daily fluid intake measurements using a “smart” water bottle. Urolithiasis, 1–6. https://doi.org/10.1007/s00240-017-1006-x
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Urolithiasis
Source
Author
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Author's manuscript
Full Text Available at
This item is under embargo {{howLong}}