Inhibition of cPLA2 has neuroprotective effects on motoneuron and muscle atrophy following spinal cord injury

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2014
Language
English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Liebert
Abstract

Surviving motoneurons undergo dendritic atrophy after spinal cord injury (SCI), suggesting an important therapeutic target for neuroprotective strategies to improve recovery of function after SCI. Our previous studies showed that phospholipase A2 (PLA2) may play an important role in the pathogenesis of SCI. In the present study, we investigated whether blocking cPLA2 pharmacologically with arachidonyl trifluoromethyl ketone (ATK) or genetically using cPLA2 knockout (KO) mice attenuates motoneuron atrophy following SCI. C57BL/6 mice received either sham or contusive SCI at the T10 level. At 30 min after SCI, mice were treated with ATK or vehicle. Four weeks later, motoneurons innervating the vastus lateralis muscle of the quadriceps were labeled with cholera toxin-conjugated horseradish peroxidase, and dendritic arbors were reconstructed in three dimensions. Soma volume, motoneuron number, lesion volume, and tissue sparing were also assessed, as were muscle weight, fiber cross-sectional area, and motor endplate size and density. ATK administration reduced percent lesion volume and increased percent volume of spared white matter compared to the vehicle-treated control animals. SCI with or without ATK treatment had no effect on the number or soma volume of quadriceps motoneurons. However, SCI resulted in a decrease in dendritic length of quadriceps motoneurons in untreated animals, and this decrease was completely prevented by treatment with ATK. Similarly, the vastus lateralis muscle weights of untreated SCI animals were smaller than those of sham-surgery controls, and these reductions were prevented by ATK treatment. No effects on fiber cross-sectional areas, motor endplate area or density were observed across treatment groups. Remarkably, genetically deleting cPLA2 in cPLA2 KO mice attenuated dendritic atrophy after SCI. These findings suggest that after SCI, cord tissue damage and regressive changes in motoneuron and muscle morphology can be reduced by inhibition of cPLA2, further supporting a role for cPLA2 as a neurotherapeutic target for SCI treatment.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Liu, N.-K., Byers, J. S., Lam, T., Lu, Q.-B., Sengelaub, D. R., & Xu, X.-M. (2014). Inhibition of cPLA2 has neuroprotective effects on motoneuron and muscle atrophy following spinal cord injury. Journal of Neurotrauma. https://doi.org/10.1089/neu.2014.3690
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Journal of Neurotrauma
Source
Author
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Author's manuscript
Full Text Available at
This item is under embargo {{howLong}}