Deformations of W algebras via quantum toroidal algebras
Date
Language
Embargo Lift Date
Department
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Abstract
We study the uniform description of deformed W algebras of type A including the supersymmetric case in terms of the quantum toroidal gl1 algebra E. In particular, we recover the deformed affine Cartan matrices and the deformed integrals of motion. We introduce a comodule algebra K over E which gives a uniform construction of basic deformed W currents and screening operators in types B,C,D including twisted and supersymmetric cases. We show that a completion of algebra K contains three commutative subalgebras. In particular, it allows us to obtain a commutative family of integrals of motion associated with affine Dynkin diagrams of all non-exceptional types except D(2)ℓ+1. We also obtain in a uniform way deformed finite and affine Cartan matrices in all classical types together with a number of new examples, and discuss the corresponding screening operators.