Toxoplasma H2A Variants Reveal Novel Insights into Nucleosome Composition and Functions for this Histone Family

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2009
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Elsevier
Abstract

Toxoplasma gondii is an obligate intracellular parasite. Toxoplasmosis is incurable because of its ability to differentiate from the rapidly replicating tachyzoite stage into a latent cyst form (bradyzoite stage). Gene regulation pertinent to Toxoplasma differentiation involves histone modification, but very little is known about the histone proteins in this early branching eukaryote. Here we report the characterization of three H2A histones, a canonical H2A1 and variants H2AX and H2AZ. H2AZ is the minor parasite H2A member. H2A1 and H2AX both have an SQ motif, but only H2AX has a complete SQ(E/D)φ (φ denotes a hydrophobic residue) known to be phosphorylated in response to DNA damage. We also show that a novel H2B variant interacts with H2AZ and H2A1 but not with H2AX. Chromatin immunoprecipitation (ChIP) revealed that H2AZ and H2Bv are enriched at active genes while H2AX is enriched at repressed genes as well as the silent TgIRE repeat element. During DNA damage, we detected an increase in H2AX phosphorylation as well as increases in h2a1 and h2ax transcription. We also found that h2ax expression, but not h2a1 and h2az, increases in bradyzoites generated in vitro. Similar analysis performed on mature bradyzoites generated in vivo, which are arrested in G0, showed that h2az and h2ax are actively expressed and h2a1 is not, consistent with the idea that h2a1 is the canonical histone orthologue in the parasite. The increase of H2AX, which localizes to silenced areas during bradyzoite differentiation, is consistent with the quiescent nature of this life cycle stage. Our results indicate that the early-branching eukaryotic parasite Toxoplasma contains nucleosomes of novel composition, which is likely to impact multiple facets of parasite biology, including the clinically important process of bradyzoite differentiation.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Dalmasso MC, Onyango DO, Naguleswaran A, Sullivan WJ Jr, Angel SO. Toxoplasma H2A variants reveal novel insights into nucleosome composition and functions for this histone family. J Mol Biol. 2009;392(1):33-47. doi:10.1016/j.jmb.2009.07.017
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Journal of Molecular Biology
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Author's manuscript
Full Text Available at
This item is under embargo {{howLong}}